## INDEX TO VOLUME 197

This index covers both the *Initial Reports* and *Scientific Results* portions of Volume 197 of the *Proceedings of the Ocean Drilling Program*. References to page numbers in the *Initial Reports* are preceded by “A” followed by the chapter number with a colon (A1:) and to those in the *Scientific Results* (this volume) by “B” followed by the chapter number with a colon (B1:).

The index was prepared by Earth Systems, under subcontract to the Ocean Drilling Program. The index contains two hierarchies of entries: (1) a main entry, defined as a keyword or concept followed by a reference to the page on which that word or concept appears, and (2) a subentry, defined as an elaboration on the main entry followed by a page reference.

The index covers volume text, figures, and tables but not core-description forms (“barrel sheets”), core photographs, smear slide data, or thin section descriptions. Also excluded from the index are bibliographic references, names of individuals, and routine front matter.

The Subject Index follows a standard format. Geographical, geologic, and other terms are referenced only if they are subjects of discussion. A site chapter in the *Initial Reports* is considered the principal reference for that site and is indicated on the first line of the site’s listing in the index. Such a reference to Site 1203, for example, is given as “Site 1203, A3:1–171.”

The Taxonomic Index is an index relating to significant findings and/or substantive discussions, not of species names *per se*. This index covers three varieties of information: (1) individual genera and species that have been erected or emended formally, (2) biostratigraphic zones, and (3) fossils depicted in illustrations. A taxonomic entry consisting of both genus and species is listed alphabetically by genus and also by species. Biostratigraphic zones are listed alphabetically by genus; zones with letter prefixes are listed under “zones.”

### SUBJECT INDEX

| A | Site 1204, A4:20–24  
|   | Site 1205, A5:18–20  
|   | Site 1206, A6:15–18  
|   | volcanioclastics, A3:30  
|   | See also oxidative alteration  
| a’a lava | alteration, low-temperature, oxidation, A3:30  
|   | alteration degree, vs. depth, A4:72–73; A5:73; A6:75  
|   | alteration mineral assemblages, vs. depth, A3:57, 99; A5:73  
|   | alteration zones, photomicrograph, A4:57  
|   | aluminum oxide  
|   | lava, A5:16  
|   | lava flows, A6:14  
|   | vs. magnesium oxide, A1:73; A5:68; A6:70  
|   | analcime, volcanioclastics, A3:19  
|   | argon isotopes, volcanism age, B1:13–14  
|   | auto-breccia, basement, A5:10  
| age |   
| paleolatitude, A1:5–7  
| volcanism, B1:13–14  
| vs. paleolatitude, A1:29  
| vs. strontium isotopes, A1:31  
| vs. virtual axial dipole moment, A1:30  
| akaganeite, alteration, A5:15  
| algae, coralline, photomicrograph, A3:66  
| algal borings, lithologic units, A5:7  
| aliettite  
|   | alteration, A6:16  
|   | lithology, A1:16  
| alkalinity, vs. depth, A1:85–86; A5:69; A6:73  
| alteration assemblages, A3:24–30  
| basalt, A3:24–29  
| mineral assemblages, A4:20; A6:16  
| photograph, A3:68  
| photomicrograph, A3:87; A4:60–66; A5:56–66; A6:50  
| Site 1203, A3:24–30  
|   | Site 1204, A4:20–24  
|   | Site 1205, A5:18–20  
|   | Site 1206, A6:15–18  
|   | volcanioclastics, A3:30  
|   | See also oxidative alteration  
| B | alteration, low-temperature, oxidation, A3:30  
|   | alteration degree, vs. depth, A4:72–73; A5:73; A6:75  
|   | alteration mineral assemblages, vs. depth, A3:57, 99; A5:73  
|   | alteration zones, photomicrograph, A4:57  
|   | aluminum oxide  
| barium | lava, A5:16  
| lava flows, A6:14  
| vs. magnesium oxide, A1:73; A5:68; A6:70  
| analcime, volcanioclastics, A3:19  
| argon isotopes, volcanism age, B1:13–14  
| auto-breccia, basement, A5:10  
| barium flows, A3:22  
| vs. depth, A1:40; A3:106; A5:69  
| vs. magnesium oxide, A3:97  
| vs. zirconium, A3:94; A4:71; A6:72  
| See also titanium/barium ratio; zirconium/barium ratio  

---
VOLUME 197 Subject Index
basalt • calcite

basalt
  basement, A6:7
demagnetization, A5:23–24
lava flows, A6:12–13
magnetic properties, A4:27–28
paleointensity, B1:9–11
paleolatitude, A5:24–25
petrography, A3:19–20
photograph, A3:65
remanent magnetization, A4:83–84
rock magnetism, A4:25–28
stratigraphy, A1:14–15
trace elements, A4:114–115
vesicles, A1:10–12
See also pillow basalt lobes
basalt, alkalic
  basement, A4:18–19; A5:10
photomicrograph, A5:57–59, 65–66
volcanology, A3:15–18
basalt, aphyric
  basement, A5:10
lithologic units, A4:11–19
photograph, A5:44
basalt, massive, well-logging, A3:44
basalt, olivine-phyric tholeiitic, basement, A5:10
basalt, plagioclase-olivine-phyric, photograph, A5:42
basalt, plagioclase-phyric alkali, photograph, A5:41
basalt, tholeiitic
  basement, A4:18–19
photomicrograph, A5:66
volcanology, A3:15–18
basalt, unweathered, photograph, A5:40
basalt, vesicular, photograph, A4:46
basalt, whole-rock, geomagnetism, B1:9–10
basalt fragments, lithologic units, A5:5
basalt glass, vesicular, photograph, A3:63
basalt lapilli tuff, lithology, A3:13
basalt lobe margin, photomicrograph, A4:50–52
basalt lobes, photograph, A4:47
basalt tephra, vesicular, photomicrograph, A3:61
basalt tuff, lithology, A3:13
basement
  lava flow units, A3:156; A4:112–113; A5:98; A6:7–14
lithologic units, A3:154; A4:45, 111; A5:39, 95–96
lithology, A1:52, 61, 70; A3:55–56; A5:8–18
opaque minerals, A4:116; A6:104–105
paleolatitude, A1:9–10
rock magnetism, A4:25–26
tholeiitic basalt, A4:18–19
Basement Unit 1, alteration, A3:24–25
Basement Unit 3, alteration, A3:25
Basement Unit 5, alteration, A3:25
Basement Unit 6, alteration, A3:25
Basement Unit 8, alteration, A3:25–26
Basement Unit 11, alteration, A3:26
Basement Unit 14, alteration, A3:26
Basement Unit 16, alteration, A3:26
Basement Unit 18, alteration, A3:27
Basement Unit 19, alteration, A3:27
Basement Unit 20, alteration, A3:27
Basement Unit 21, alteration, A3:27
Basement Unit 23, alteration, A3:27–28
Basement Unit 24, alteration, A3:27–28
Basement Unit 26, alteration, A3:28
Basement Unit 29, alteration, A3:28
Basement Unit 30, alteration, A3:28
Basement Unit 31, alteration, A3:28
basement unit boundaries, integration with recovery per core, A3:58
basement units, well-logging, A3:43
bathymetry, A5:33; B6:6
bioclasts
  basement, A6:7
  lithologic units, A5:5–6
bioevents, nanofossils, B4:4, 11–12
biostratigraphy
  Paleocene–Miocene nanofossils, B4:1–12
  Site 1203, A3:10–11
  Site 1204, A4:10–11
  Site 1205, A5:7–8
  Site 1206, A6:5–6
  vs. depth, A1:33–34; A3:55–56
biotite
  lava, A5:14–15
  photomicrograph, A5:52
bioturbation
  basement, A6:7
  photograph, A4:42
bivalves
  lithologic units, A5:6–7
  photomicrograph, A5:37
breccia
  basement, A5:10
  photograph, A1:53; A4:46
  stratigraphy, A1:13
  well-logging, A3:44
  See also auto-breccia; lapilli breccia
breccia, basal, photograph, A5:42
breccia, flow-foot, volcanic units, A6:10
breccia, hyaloclastite lapilli
  photograph, A6:32
  volcanic units, A6:10
breccia, lapilli, lithology, A6:5
breccia, volcanic
  lithology, A3:13–14
  photograph, A3:65
bryozoans
  lithologic units, A5:5–6
  photomicrograph, A5:37
bulk density logs, vs. depth, A1:41; A3:55–56, 131
burrows, photograph, A3:53

C
calcarenite, basement, A6:7
calcareous sediment, photograph, A1:35
calciilutite, basement, A6:7
calcite
  alteration, A3:24–30; A4:20–21, 23
  basalt, A3:20
VOLUME 197 SUBJECT INDEX

calcite (continued) • compound pahoehoe lava

photograph, A3:103
vs. depth, A3:101–102; A4:40
calcite, organic, vs. depth, A5:36
calcite + dolomite, vs. depth, A3:52; A4:39
calcite cement, lithologic units, A5:5–6
calcite matrix, photograph, A3:67
calcium oxide
lava flows, A3:22–24; A5:16–17
vs. depth, A1:40; A3:106
vs. loss on ignition, A4:69
vs. magnesium oxide, A1:73; A3:96; A5:68; A6:70
caliper logs, vs. depth, A1:41; A3:131–132, 138
Campanian
biostratigraphy, A4:10–11
calcareous nannofossils, B3:1–10
lithologic units, A4:7–9
magnetic polarity, A4:25
nannofossils, A1:10–12; B4:4
stratigraphy, A1:13
Campanian/Maastrichtian boundary, biostratigraphy,
A4:10–11
carbon, inorganic, lithologic units, A5:97
carbon, total, lithologic units, A5:97
carbon, total organic, lithologic units, A5:97
carbonate cement
lithology, A3:14
photograph, A4:46
carbonate content
lithologic units, A4:107; A5:97
vs. depth, A3:52, 99–102; A4:38; A5:35–36
carbonates
abundance, A3:149; A4:107
lithologic units, A5:93
photograph, A6:77
vs. depth, A5:73
celadonite
alteration, A3:26–30; A5:19; A6:16
photograph, A5:74; A6:77
vs. depth, A3:99, 101–102; A5:73
chalcopyrite, alteration assemblages, A4:21–22
chalk, calcareous, lithologic units, A3:8–9; A4:6–9
chalk, clayey, lithologic units, A4:6–9
chalk, clayey nannofossil, lithologic units, A4:7–8
chalk, nannofossil
lithologic units, A3:8–9; A4:6–9
photograph, A4:42
chalk, nannofossil-foraminifer, lithologic units, A4:6
chalk, photograph, A1:51
charcoal, lithologic units, A5:6
chlorite
alteration, A3:26–30
vs. depth, A3:100, 102
chrome spinel
lava, A5:14–15
lava flows, A3:21; A6:13
photomicrograph, A1:21; A6:19; A5:81, 91–92; A6:55–66;
A6:43–44, 58–60, 63
See also ulvöspinel
chrome spinel, relict, photomicrograph, A6:53, 64, 66
chrome spinel phenocrysts, photomicrograph, A6:49,
60–61, 64

Chron C20r–C21n, magnetic polarity, A6:21
Chron C21n–C21r, magnetic polarity, A6:21
Chron C21n–C22r–C22n, magnetic polarity, A5:23
Chron C22n–C21r–C21n polarity chron sequence, sedi-
ments, A4:25
Chron C22n–C22r–C23n, magnetic polarity, A6:21
Chron C23, sediments, A4:25
Chron C24r, basalt, A5:24
Chron C33n, sediments, A4:25
chrons, plagioclase, B1:12–13
clast size, vs. depth, A3:57
clasts
lithologic units, A4:8–9; A5:6, 10
lithology, A3:13–14
photograph, A1:60; A5:43; A6:32
volcaniclastics, A3:19
clasts, basalt tephra, photomicrograph, A3:62, 64
clasts, lapilli scoria, photograph, A3:63
clasts, mud, lithologic units, A5:6
clay
alteration, A6:16
alteration assemblages, A4:20
lithologic units, A5:6
vs. depth, A4:38, 41
clay, brown
photograph, A6:76–77
vs. depth, A3:99–100, 102; A5:73
clay, green
photomicrograph, A1:71; A6:41–42
vs. depth, A3:100–101; A5:73
clay, green-blue, vs. depth, A3:101
clay, gysiferous, lithologic units, A4:9
clay, palagonite, photograph, A4:43
clay, silty, lithologic units, A4:8–9
cleavage planes, photomicrograph, A4:64–65; A5:62–64;
A6:50, 56, 62
clinopyroxene
basalt, A5:10
lava, A5:14
lava flows, A6:12–13
photomicrograph, A4:53–56; A5:53
silicates, A4:15–16
clinopyroxene, acicular, photomicrograph, A3:82
clinopyroxene glomerocrysts, photomicrograph, A6:47–
48, 68
cobalt
alteration, A3:29
vs. zirconium, A3:108
cobalt/zirconium ratio
vs. depth, A3:107; A4:77–78; A5:75; A6:78
coccoliths, vs. depth, A3:52
coercivity
basalt, A4:26–27, 88; A5:78; A6:19
basement, A3:34
lithologic units, A5:21–22
color, alteration assemblages, A4:20
comb texture, photomicrograph, A3:82
compound pahoehoe lava
internal architecture, A5:11–13, 45; A6:10, 31
volcanology, A3:16–17
compressional wave velocity
  alternating-field demagnetization vector, A5:81
  vs. bulk density, A5:88; A6:92
  vs. depth, A3:33–34; A4:126–127; A4:99–100; A5:85; A6:89
  density, gamma-ray attenuation bulk
  lithologic units, A3:37–38, 164; A4:31, 120; A5:26, 107; A6:22, 112
  vs. depth, A3:125–126; A4:95–96, 99
  density, grain, vs. depth, A3:126–127; A4:99–100; A5:85; A6:89
  density logs. See bulk density logs
Detroit Seamount
  geology, A1:1–92
  seismic reflection surveys, B6:1–17
Eocene
  foraminiferal biostratigraphy, B2:1–4
  lithology, A1:16; A6:5
  nannofossil zonation, A3:11
  nannofossils, A6:5–6
  stratigraphy, A1:13
  See also Paleocene/Eocene boundary
Eocene, lower, lithologic units, A3:9; A4:6–7; A5:5–7
Eocene, middle
  biostratigraphy, A4:10–11
  lithologic units, A3:8–9; A4:6–7
  magnetic polarity, A4:25
Eocene/Oligocene boundary, nannofossils, B4:3
Eruption units, internal architecture, A6:31
exsolution
  photomicrograph, A3:86; A4:64
  volcanology, A3:18
exsolution lamellae, lava flows, A3:21
fall deposits, lithology, A3:13–14
faults, photograph, A4:42
feldspar, vs. depth, A4:39; A5:36
ferrihydrite, alteration, A5:15
ferroxyrite, alteration, A5:15
fiber-optic gyro, rotation, A3:45–46
Fisher distribution, magnetic inclination, A3:36
foraminifers
  lithologic units, A5:5–6
  vs. depth, A4:38
foraminifers, benthic, Eocene biostratigraphy, B2:1–4
Formation MicroScanner imagery
  boreholes, B5:9–10
  vs. depth, A1:42–43; A3:133–137
  wavelet analysis, B5:15
fractures
  basalt, A3:19–20
  Formation MicroScanner imagery, A1:81
  photomicrograph, A4:49; A5:50, 63–64; A6:56, 62

gamma-ray logs, vs. depth, A1:41–42; A3:55–56, 131–133
gamma rays
  lithologic units, A3:38, 165; A4:31–32, 121; A5:26, 108; A6:22–23, 113
  vs. depth, A1:33–34; A3:125, 127; A4:95–97; A5:85; A6:89
Gauss coefficient, relative to axial dipole, A1:30
geochemistry, plate motion, B1:1–39
gemodynamic model, paleomagnetism, B1:28
geomagnetic field vector, orientation, B5:14
geomagnetic polarity timescale, correlation, A3:31–32; A4:25
geomagnetism, Late Cretaceous–Paleogene geomagnetic field, B1:9–11
glomerocrysts
  basalt, A3:19–20
  lava, A5:15
  lava flows, A6:12–13
  photomicrograph, A5:52–53; A6:46–48, 68
  See also olivine glomerocrysts; plagioclase glomerocrysts
goethite
  alteration, A3:28–30; A4:21
  photomicrograph, A4:49, 63; A5:59
  goethite, amorphous, alteration, A5:15
  Goettingen Borehole Magnetometer, algorithm validation, B5:7
gravel, lithology, A6:5
gypsum, vs. depth, A4:40

hafnium isotopes
  volcanism, B1:16
  vs. seamount age, B1:39
Hawaii, major elements, B1:37
Hawaiian-Emperor volcanic lineament, geology, A1:1–92
Hawaiian hotspot
  geochemistry, B1:1–39
  plate motion, A1:7–8; B1:1–39
hawaiite
  lava, A5:16
  photograph, A1:60; A5:43
  hawaiite cobbles, photomicrograph, A5:59–60
  helium isotopes
    volcanism, B1:16
    vs. seamount age, B1:39
  hematite, lithologic units, A5:5
  hematite-ilmenite solid solution, lava flows, A3:20–21
  hiatuses, Paleocene–Miocene sequence, B4:5
hotspots
  distance along tracks vs. age, B1:33
  mantle plumes, B1:9
  motion, B1:8–9
  motion and tracks, B1:34
  paleomagnetism, A1:17–19
  plate motion, A1:7–8
  source and melting history, A1:19–20
hyaloclastite
  basement, A6:7
  lithology, A3:12–14
hyaloclastite tuff, volcaniclastics, A3:19
hybrid pillow-pahoehoe lavas, volcanology, A3:17
hysteresis. See magnetic hysteresis

iddingsite
  alteration, A3:24–30
  basalt, A3:20
  lava flows, A6:12–13
  photomicrograph, A1:71; A5:54; A6:39, 41–42, 63, 65, 67
igneous petrology
  Site 1203, A3:11–24
  Site 1204, A4:11–19
  Site 1205, A5:8–18
  Site 1206, A6:6–15
ilmenite
  alteration, A5:16
  photomicrograph, A3:86; A4:65; A5:60–62; A6:54–55, 65
  See also hematite-ilmenite solid solution
  image orientation, microresistivity, B5:1–22
  inclinometry, magnetized formations, B5:1–22
  inclusions
    alteration, A5:16
    See also magnetic inclusions; melt inclusions
index properties
  basalt, A1:12
  lithologic units, A3:39, 167–168; A4:32–33, 123; A5:27, 110; A6:23, 115
iron oxides
  lithologic units, A3:9
  vs. depth, A3:52, 99; A4:39, 41; A5:36
iron oxyhydroxide
  alteration, A3:24–30; A4:21–23; A5:15; A6:16
  basalt, A3:20
  lava flows, A6:12–13
  lithologic units, A4:6–9
  photomicrograph, A4:49, 66; A5:54
  vs. depth, A3:101–102; A5:73
VOLUME 197 SUBJECT INDEX

isotopes, hotspots • loss on ignition

isotopes, hotspots, A1:19–20

J

joints
  photograph, A4:47
  volcanology, A3:17

K

Koenigsberger ratio
  basalt, A6:18
  basement, A3:32–33; A4:25–26
  lithologic units, A5:21
  vs. depth, A3:112; A4:85–86; A5:76; A6:79
Koko Seamount
  magnetic inclination, B1:5
  paleolatitude, A1:5–7
  seismic reflection surveys, B6:3

L

laminations
  lithologic units, A3:8; A4:6
  photograph, A1:51; A4:42, 47
laminations, planar, photograph, A1:78
lapilli, armored, photograph, A3:63
lapilli, stratigraphy, A1:13
lapilli breccia
  lithologic units, A4:13
  pahoehoe lava, lithologic units, A4:15
lapilli scoria, lithology, A3:13
lapilli tuff, photograph, A3:128
lapillistone, lithology, A3:13
Late Cretaceous–Cenozoic mixed polarity interval, virtual axial dipole moment, A1:30
lava
  emplacement diagram, A6:35
  flow into sea, Iceland, A6:34
  lithologic units, A4:11–19
  petrography, A5:14–16
  photograph, A3:63, 65
  silicates, A4:15–16
  viscosity, A5:13
lava delta, internal architecture, A6:31
lava flow units
  basement, A3:14–15, 156; A4:112–113; A5:10, 98; A6:7–14
  structure, A5:47; A6:101
  type distribution, A6:103
  Unit 1, A5:12–13; A6:10
  Unit 2a, A6:10
  Unit 2a–2c, A6:10
  Unit 3, A5:12–13
  Unit 4, A6:10
  Unit 5, A6:11
  Unit 5b, A5:12–13
  Unit 6, A5:12–13; A6:10
  Unit 7, A6:10
  Unit 8, A5:12
  Unit 8a–8o, A6:10
  Unit 9, A5:11–12
  Unit 10, A5:11–12; A6:10
  Unit 11a–11ae, A6:10
  Unit 11b, A5:12–13
  Unit 12, A5:11–12
  Unit 13, A6:10
  Unit 13b, A5:12
  Unit 14b, A5:12–13
  Unit 15b, A5:11–12
  Unit 16, A5:12
  Unit 17, A5:12; A6:11
  Unit 18, A6:11
  Unit 18b, A5:11–12
  Unit 19b, A5:12
  Unit 19c, A5:12
  Unit 20, A5:12
  Unit 21, A5:12; A6:11
  Unit 22, A5:12–13
  Unit 24, A5:12
  Unit 26a, A5:12–13
  Unit 27, A5:12–13
  Unit 28, A5:12–13
  Unit 29, A5:12
  Unit 30, A5:12
  lava flows
    comparison with other Hawaiian islands, A3:22–24
    lithology, A6:5
    petrography, A6:12–13
    plate motion, A1:7–8
    rock magnetism, A6:108
    volcanology, A3:15–18
    See also transitional lava
  lava flows, aphyric basalt, photograph, A5:42
  lava lobes, volcanology, A3:15–17
  lead isotopes, lava, B1:38
  lepidocrocite, alteration, A5:15
  limestone, basement, A6:7
  lithic fragments, volcanics, A3:19
  lithologic units
    basement, A3:154; A4:45; A5:8–18, 39, 95–96
    comparison of logs and cores, A3:170
    photograph, A3:53, 60
    Site 1203, A3:7–10
    Site 1204, A4:6–9
    Site 1205, A5:5–7
    Unit I, A3:7–8; A4:6; A5:5
    Unit II, A3:8–9; A4:6–7; A5:5
    Unit III, A3:9; A4:7; A5:6
    Unit IV, A4:7–9; A5:6
    Unit V, A5:6–7
    volcanics, A3:155
  lithology, vs. depth, A1:33–34; A3:52, 57; A4:37–41; A5:34; A6:29
  lithostratigraphy
    Site 1203, A3:6–10
    Site 1204, A4:4–9
    Site 1205, A5:5–7
    Site 1206, A6:5
  loss on ignition
    alteration, A3:29; A4:22–23; A5:19; A6:16–17
    lava flows, A3:22
VS. CALCIUM OXIDE, A4:69
VS. DEPTH, A1:40; A3:106; A4:77–78; A5:75; A6:78
LOWRIE-FULLER TESTS
basalt, A4:26, 87; A5:77
basement, A3:33–34
lava flows, A6:80
LITHOLOGIC UNITS, A5:21–22
M
MAASTRICHTIAN
BIOSTRATIGRAPHY, A4:10–11
See also
Campanian/Maastrichtian boundary
MAHHEMITE
ALTERATION, A5:15
LAVAフLOWS, A6:26, 87; A5:77
BASEMENT, A3:33–34
LAVАフLOWS, A6:80
LITHOLOGIC UNITS, A5:21–22
MAHHEMITE/TITANOMAHHEMITE LAMELLEA, LAVAフLOWS, A3:21
MAGNESITE, ALTERATION, A3:24–30
MAGNESIUM OXIDE
BASEMENT, A4:18–19
LAVAフLOWS, A5:16–17; A6:14–15
VOLCANISM, A3:22–24
VS. ALUMINUM OXIDE, A1:73; A5:68; A6:70
VS. BARIUM, A3:97
VS. CALCIUM OXIDE, A1:73; A3:96; A5:68; A6:70
VS. NIOBIMUM, A3:96
VS. PHOSPHORUS OXIDE, A3:97
VS. POTASSIUM OXIDE, A1:73; A5:68; A6:70
VS. SCANDIUM, A3:96; A5:70; A6:71
VS. SODIUM OXIDE, A1:73; A3:68; A5:68;
VS. STRONTIUM, A3:96–97
VS. TITANIUM/BARIUM RATIO, A5:71
VS. TITANIUM/STRONTIUM RATIO, A5:71
VS. TITANITE OXIDE, A1:73; A3:97; A4:17, 68; A5:68; A10:74
VS. ZIRCONIUM, A1:73; A3:97; A5:68; A6:70, 74
VS. ZIRCONIUM/BARIUM RATIO, A5:71
VS. ZIRCONIUM/STRONTIUM RATIO, A5:71
MAGNETIC DECLINATION, VECTOR PLOTS, A5:82–83
MAGNETIC DOMAINS
Basalt, A5:77, 79
See also
MULTIMODAL GRAINS
MAGNETIC FIELD
COMPARISON OF COMPONENTS, A3:139–141
VS. DEPTH, A3:138
MAGNETIC FIELD INCLINATION, VS. DEPTH, A3:138
MAGNETIC FIELD ON X-AXIS, VS. DEPTH, A3:138
MAGNETIC FIELD ON Y-AXIS, VS. DEPTH, A3:138
MAGNETIC FIELD ON Z-AXIS, VS. DEPTH, A3:138
MAGNETIC HYSTERESIS
PLAGIOCLASE, B1:11–13
VS. TOTAL SATURATION MAGNETIZATION, B1:29
MAGNETIC INCLINATION
AVERAGES, A6:109–110
REMANENT MAGNETIZATION, A3:161–162; A4:118;
A5:105
THERMAL DEMAGNETIZATION, B1:26
VECTOR PLOTS, A5:82–83
VS. DEPTH, A3:111; A4:82
VS. PALEOLATITUDE, A1:28
VS. REMANENT MAGNETIZATION, A6:83
MAGNETIC INCLUSIONS, PLAGIOCLASE, B1:11–13
MAGNETIC INTENSITY, VS. DEPTH, A1:44
MAGNETIC ISOCHRONES, SEAFLOOR, VOLCANIC CENTERS, B1:25
MAGNETIC LOGGING
ALGORITHM VALIDATION, B5:7–9
BASEMENT, A3:44–45
VS. DEPTH, B5:16–17, 19–21
MAGNETIC POLARITY, VS. DEPTH, A4:82
MAGNETIC REVERSALS
FIRST-ORDER CURVES, B1:30
RATES, B1:32
MAGNETIC SUSCEPTIBILITY
Basalt, A6:18
Baseament, A3:37, 163; A4:25–26, 30–31, 119
LITHOLOGIC UNITS, A5:21, 25–26, 106; A6:22, 111
VS. DEPTH, A3:125; A4:38–41, 95–96
MAGNETIC SUSCEPTIBILITY, LOW-FIELD
BASEMENT, A3:32–33
VS. DEPTH, A3:112; A4:85–86; A5:76; A6:79
VS. MEDIAN DESTRUCTIVE FIELD, A3:114; A4:94
VS. NATURAL REMANENT MAGNETIZATION INTENSITY, A3:113
MAGNETITE, LAVAフLOWS, A3:20
MAGNETIZED FORMATIONS, INCLINOMETRY, B5:1–22
MAGNETOMETER TOOL ROTATION, VS. DEPTH, A1:82
MAJOR ELEMENTS
ALTERATION, A4:22–23
Basalt, A4:17–18, 114–115
Baseament, A3:158–160; A6:106–107
Lava, B1:37
Lava flows, A5:16–18, 101–103; A6:13–15
Volcanism, B1:14–17
MANTLE PLUMES, HOTSPOTS, B1:9, 17
MAPS, SEISMIC LINES, B6:7, 8, 9
MAUNA KEA, TRACE ELEMENT COMPARISON WITH DETROIT SEAMOUNT LAVA, A3:97
MAUNA LOA, TRACE ELEMENT COMPARISON WITH DETROIT SEAMOUNT LAVA, A3:97
MEDIAN DESTRUCTIVE FIELD
Basalt, A6:19
Baseament, A3:32–33; A4:25–26
LITHOLOGIC UNITS, A5:21
VS. DEPTH, A3:112; A4:85–86; A5:76; A6:79
VS. LOW-FIELD MAGNETIC SUSCEPTIBILITY, A3:114; A4:94
MEGAVEICLES, PHOTOMICROGRAPH, A3:103; A4:76
MEJI DRIFT, GEOLOGY, A1:10–12
MELT INCLUSIONS, PHOTOMICROGRAPH, A1:21, 88; A3:76–77; A4:52
MELT SEGREGATION, VOLCANOLOGY, A3:17
MESOLITE, VOLCANICLASTICS, A3:19
MESOSTASIS
ALTERATION, A3:28–30
Basalt, A3:19–20
Lava, A3:15
MICA, ALTERATION, A5:19
MICRITE ENVELOPES, LITHOLOGIC UNITS, A5:7
MICROLITES, PHOTOMICROGRAPH, A3:71
MICROPHENOCRYSTS, VOLCANIC ROCKS, A6:8
microresistivity, boreholes, B5:1–22
mineral assemblages, vs. depth, A6:75
Miocene
  nannofossil zonation, A3:10–11
  nannofossils, B4:1–12
Miocene, middle, lithologic units, A3:8
Miocene, upper, lithologic units, A3:7–8
mudstone, volcaniclastics, A3:19
multidomain grains
  basement, A3:33–34; A4:27–28
plagioclase, B1:11–13

N
nannofossils
  lithologic units, A3:7–9; A4:6–9
Oligocene, A1:10–12
Paleocene–Miocene biostratigraphy, A1:2–12
paleoenvironment, A5:8
  vs. depth, A4:38, 40
nannofossils, calcareous
  biostratigraphy, A3:10–11; A4:10–11; A5:7–8; A6:5–6
  Campanian, B3:1–10
  zonation, A3:54; A4:44; A5:7–8, 38; A6:5–6; B4:9–10
Narizian, biostratigraphy, B2:4
natrolite, volcaniclastics, A3:19
neodymium isotopes, volcanism, B1:16
nickel, lava flows, A3:22–24
Nintoku Seamount
  magnetic inclination, B1:5–6
  paleolatitude, A1:5–7
  seismic reflection surveys, B6:3
niobium, vs. magnesium oxide, A3:96
nitrogen, lithologic units, A5:97
nontronite
  alteration, A6:16
  alteration assemblages, A4:20–23
  vs. depth, A5:73

O
Oligocene
  nannofossil zonation, A3:10–11
  stratigraphy, A1:10–12
See also Eocene/Oligocene boundary
Oligocene, lower, lithologic units, A3:7–8
Oligocene, upper, lithologic units, A3:8–9
olivine
  basalt, A5:10
  lava, A3:15
  lava flows, A6:12–13
  olivine, altered groundmass, photomicrograph, A6:51
  olivine, euhedral, photomicrograph, A1:71; A6:36, 40–42
  olivine glomerocrysts, photomicrograph, A3:78; A5:51; A6:46–48
  olivine groundmass, photomicrograph, A5:54
  olivine laths, photomicrograph, A1:54–55
  olivine microphenocrysts, lithologic units, A4:11–19
olivine phenocrysts
  alteration, A3:24–30
  lava, A3:15; A5:14–15
  olivine phenocrysts, partially altered, photomicrograph, A5:52
  olivine phenocrysts, sheared relict, photomicrograph, A5:55
  olivine pseudomorphs
  lava, A3:15
  photomicrograph, A3:79; A4:49
  ooze, diatom, lithologic units, A3:8
  ooze, nannofossil, lithologic units, A3:8
  ooze, nannofossil-diatom, lithologic units, A3:8
  opaque minerals
  lava flows, A3:20–21; A6:13
  lithologic units, A3:8–9; A5:6
  photomicrograph, A5:53
  vs. depth, A3:52; A4:39, 41; A5:36
  optical zonation, plagioclase phenocrysts, A4:48
  organic debris
  lithologic units, A4:6–9
  vs. depth, A3:52; A4:38, 40
  oxidation lamellae, photomicrograph, A5:60–61, 63–65; A6:54–55, 61, 65
  oxidative alteration, lava flows, A3:21
  oxides, black, vs. depth, A3:101
  oxidizing zone
  alteration, A4:21
  photograph, A4:74–75
  oxidizing zone/reducing zone contact, photograph, A4:74–75

P
Pacific Ocean NW, Paleocene–Miocene nannofossils, B4:1–12
Pacific plate, plate motion, A1:5–7
pahoehoe lava
  basement, A4:18–19
  graphic logs, A3:72–74
  lithologic units, A4:14
  lobe thickness distribution, A3:70
  stratigraphy, A1:13
  vesicles, A1:10–11
  volcanic rocks, A6:8
See also compound pahoehoe lava; hybrid pillow-pahoehoe lavas; simple pahoehoe lava
palagonite
  lithologic units, A4:6
  volcanology, A3:16–17
palagonite/volcanic ash ratio, vs. depth, A4:39, 41
palagonitization, lithologic units, A5:5
paleobathymetry, Eocene, B2:2
paleoceanography, Paleogene, A1:18
Paleocene
  nannofossils, B4:1–12
  stratigraphy, A1:13
Paleocene, upper
  biostratigraphy, A4:10–11
  lithologic units, A4:7–9
  magnetic polarity, A4:25
Paleocene/Eocene boundary
  biostratigraphy, A5:7–8
  lithologic units, A5:5–7
paleodeclination, plate motion, A1:18
paleoenvironment
  Campanian nannofossils, B3:1–10
  nannofossils, A5:8
Paleogene
  geomagnetism, B1:9–11
  paleoceanography, A1:18
paleointensity
  basalt, B1:9–11
  plagioclase, B1:31
  plate motion, A1:5–7
  thermal demagnetization, B1:29
paleolatitude
  basalt, A5:24–25
  basement, A1:9–10
  history, B1:7–8
  magnetic inclination, A3:35–36
  paleomagnetism, B1:3–7
  plate motion, B1:2–13
  remanent magnetization, A6:20–22
  vs. age, A1:29; B1:27–28
  vs. magnetic inclination, A1:28
paleomagnetism
  basalt, A1:12, 14–17
  basement, A3:34–37
  geodynamic model, B1:28
  hotspots, A1:17–19
  paleolatitude, B1:3–7
  plate motion, A1:7–10
  Site 1203, A3:31–37
  Site 1204, A4:24–30
  Site 1205, A5:21–25
  Site 1206, A6:18–22
pebbles, lithologic units, A4:8–9
pentlandite
  lava flows, A3:20–21
  photomicrograph, A3:90
Penutian, biostratigraphy, B2:4
petrography
  lava, A5:14–16
  lava flows, A6:12–13
phenocrysts
  basalt, A3:19–20
  vs. depth, A3:57
  See also chrome spinel phenocrysts; microphenocrysts; plagioclase phenocrysts
phillipsite
  alteration, A4:21
  lithologic units, A5:6
  vs. depth, A5:36
  phlogopite, lava, A5:14–15
phosphorus
  lava flows, A3:21–22
  vs. zirconium, A3:94; A4:71
phosphorus oxide, vs. magnesium oxide, A3:97
physical properties
  Site 1203, A3:37–40
  Site 1204, A4:30–33
  Site 1205, A5:25–28
  Site 1206, A6:22–24
physical volcanology
  Site 1203, A3:11–24
  Site 1204, A4:11–19
  Site 1205, A5:8–18
  Site 1206, A6:6–15
pillow basalt lobes, well-logging, A3:43–44
pillow lava
  basement, A4:18–19
  graphic logs, A3:73
  lobe thickness distribution, A3:70
  photograph, A3:69
  units, A3:69
  volcanology, A3:16
  See also hybrid pillow–pahoehoe lavas
pipe vesicles
  lithologic units, A4:12–13
  volcanology, A3:18
plagioclase
  basalt, A3:19–20; A5:10
  lava, A5:14
  lava flows, A6:12–13
  magnetic inclusions, B1:11–13
  paleointensity, B1:31
  plagioclase, anhedral, photomicrograph, A6:45
  plagioclase, skeletal, photomicrograph, A3:82
  plagioclase glomerocrysts, photomicrograph, A5:51; A6:46–48, 68
  plagioclase laths, photomicrograph, A1:54–55; A4:50–54; A5:60
  plagioclase megacrysts, photomicrograph, A5:48–49
  plagioclase phenocrysts
    lava, A3:15
    optical zonation, A4:48
    photograph, A3:59, 76–77
    photomicrograph, A1:21, 88; A4:48; A5:48–50
  plagioclase zonation, photomicrograph, A1:36; A3:75; A5:49
plate motion
  geochemistry, B1:1–39
  paleodeclination, A1:18
  seamounts, A1:5–7
polar wander, seamounts, A1:5–7
porosity, vs. depth, A1:33–34; A3:126–127; A4:99–100; A5:85; A6:89
  See also hybrid pillow–pahoehoe lavas
potassium, vs. zirconium, A3:94
potassium oxide
  See also hybrid pillow–pahoehoe lavas
  alteration, A3:29; A4:22–23; A5:19
  lava, A5:16
  lava flows, A3:21–22; A6:14
  vs. depth, A4:77–78; A5:75; A6:78
physical properties
  Site 1203, A3:37–40
  Site 1204, A4:30–33
  Site 1205, A5:25–28
  Site 1206, A6:22–24
physical volcanology
  Site 1203, A3:11–24
  Site 1204, A4:11–19
  Site 1205, A5:8–18
  Site 1206, A6:6–15
pillow basalt lobes, well-logging, A3:43–44
pillow lava
  basement, A4:18–19
  graphic logs, A3:73
  lobe thickness distribution, A3:70
  photograph, A3:69
  units, A3:69
  volcanology, A3:16
  See also hybrid pillow–pahoehoe lavas
pipe vesicles
  lithologic units, A4:12–13
  volcanology, A3:18
plagioclase
  basalt, A3:19–20; A5:10
  lava, A5:14
  lava flows, A6:12–13
  magnetic inclusions, B1:11–13
  paleointensity, B1:31
  plagioclase, anhedral, photomicrograph, A6:45
  plagioclase, skeletal, photomicrograph, A3:82
  plagioclase glomerocrysts, photomicrograph, A5:51; A6:46–48, 68
  plagioclase laths, photomicrograph, A1:54–55; A4:50–54; A5:60
  plagioclase megacrysts, photomicrograph, A5:48–49
  plagioclase phenocrysts
    lava, A3:15
    optical zonation, A4:48
    photograph, A3:59, 76–77
    photomicrograph, A1:21, 88; A4:48; A5:48–50
  plagioclase zonation, photomicrograph, A1:36; A3:75; A5:49
plate motion
  geochemistry, B1:1–39
  paleodeclination, A1:18
  seamounts, A1:5–7
polar wander, seamounts, A1:5–7
porosity, vs. depth, A1:33–34; A3:126–127; A4:99–100; A5:85; A6:89
  See also hybrid pillow–pahoehoe lavas
potassium, vs. zirconium, A3:94
potassium oxide
  See also hybrid pillow–pahoehoe lavas
  alteration, A3:29; A4:22–23; A5:19
  lava, A5:16
  lava flows, A3:21–22; A6:14
  vs. depth, A4:77–78; A5:75; A6:78
  See also hybrid pillow–pahoehoe lavas
pipe vesicles
  lithologic units, A4:12–13
  volcanology, A3:18
plagioclase
  basalt, A3:19–20; A5:10
  lava, A5:14
  lava flows, A6:12–13
  magnetic inclusions, B1:11–13
  paleointensity, B1:31
  plagioclase, anhedral, photomicrograph, A6:45
  plagioclase, skeletal, photomicrograph, A3:82
  plagioclase glomerocrysts, photomicrograph, A5:51; A6:46–48, 68
  plagioclase laths, photomicrograph, A1:54–55; A4:50–54; A5:60
  plagioclase megacrysts, photomicrograph, A5:48–49
  plagioclase phenocrysts
    lava, A3:15
    optical zonation, A4:48
    photograph, A3:59, 76–77
    photomicrograph, A1:21, 88; A4:48; A5:48–50
  plagioclase zonation, photomicrograph, A1:36; A3:75; A5:49
plate motion
  geochemistry, B1:1–39
  paleodeclination, A1:18
  seamounts, A1:5–7
polar wander, seamounts, A1:5–7
porosity, vs. depth, A1:33–34; A3:126–127; A4:99–100; A5:85; A6:89
  See also hybrid pillow–pahoehoe lavas
potassium, vs. zirconium, A3:94
potassium oxide
  See also hybrid pillow–pahoehoe lavas
  alteration, A3:29; A4:22–23; A5:19
  lava, A5:16
  lava flows, A3:21–22; A6:14
  vs. depth, A4:77–78; A5:75; A6:78
  See also hybrid pillow–pahoehoe lavas
VOLUME 197 SUBJECT INDEX
potassium oxide (continued) • seismic profiles

vs. magnesium oxide, A1:73; A5:68; A6:70
vs. zirconium, A3:108; A4:79
See also sodium oxide + potassium oxide

pyrite
alteration assemblages, A4:21–23
lava flows, A3:20–21
photograph, A4:76
vs. depth, A3:99–102; A5:73
pyrite, secondary, photomicrograph, A4:57
pyroclastics, lithology, A3:12–14
pyroxene
photomicrograph, A5:53
See also clinopyroxene

Quaternary, nannofossils, A6:5–6
quenching
basalt, A3:20
photomicrograph, A4:55

red algae, coralline
lithologic units, A5:5
photomicrograph, A5:37
reducing zone
alteration, A4:21–22
photograph, A4:74–75
See also oxidizing zone/reducing zone contact
reduction, photomicrograph, A4:57
relict bands, photomicrograph, A4:64
remanent magnetization
conglomerate, A3:120
diabase, A4:93
magnetic inclination, A3:161–162
paleolatitude, A6:20–22
plagioclase, B1:12–13
sediments, A3:31, 109–110; A4:24–25, 80–81
vector plots, A6:84–87
volcaniclastics, A3:119–120
vs. compressional wave velocity, A6:83
vs. depth, A6:79
vs. magnetic inclination, A6:83
remanent magnetization, anhysteretic
basalt, A3:115; A4:26, 87; A5:77, 79; A6:19
basement, A3:33–34
lava flows, A6:80
lithologic units, A5:22
remanent magnetization, characteristic
basalt, A5:24
paleolatitude, A6:20–22
remanent magnetization, isothermal
basalt, A3:115; A4:26–27, 88; A5:78
lava flows, A6:81
lithologic units, A5:22

remanent magnetization, natural
basalt, A4:27–28; A5:79; A6:19
decay spectra, A6:82
intensity vs. low-field magnetic susceptibility, A3:113
lava flows, A6:20
vs. temperature, B1:29
vs. thermoremanent magnetization, B1:29
remanent magnetization, saturation isothermal
basalt, A4:26, 87; A5:77, 79; A6:19
basement, A3:33–34
lava flows, A6:80
lithologic units, A5:22
remanent magnetization, total saturation, vs. magnetic
hysteresis, B1:29
resistivity logs
vs. depth, A1:41–42; A3:131, 133
See also deep resistivity logs; microresistivity; shallow resistivity logs
resorption rims, photomicrograph, A5:48; A6:45
reticulite, photomicrograph, A3:61
rock magnetism
basalt, A4:25–26
basement, A3:32–34
lava flows, A6:108
Site 1203, A3:31–37
Site 1204, A4:24–30, 117
Site 1205, A5:21–25, 104
Site 1206, A6:18–22

sand, carbonate, photograph, A4:47
sandstone
nannofossils, A6:5–6
stratigraphy, A1:14–15
sandstone, silty, lithologic units, A4:8–9; A5:5
sandstone, vitric, lithologic units, A5:5
sandstone, volcaniclastic, lithology, A3:14
sandy matrix, photograph, A5:43
saponite
alteration, A3:24–30; A4:20–23; A6:16
photograph, A4:76; A5:74; A6:77
vs. depth, A3:99–102; A5:73
scandium, vs. magnesium oxide, A3:96; A5:70; A6:71
scoria. See lapilli scoria
scoria fall deposit, photograph, A3:63
seamounts
age, A1:31
paleolatitude, A1:5–7
sediment folding, intraformational, lithologic units, A4:9
sedimentary intercalations, basalt occurrence, A6:97–98
sedimentary units, well-logging, A3:42
sediments
remanent magnetization, A3:31; A4:24–25, 80–81
rock magnetism, A4:25–26
segregated material in vesicles, photomicrograph, A3:95;
A4:55–56; A6:52
segregation structures, volcanology, A3:18
seismic methods, deconvolution, A6:117
seismic profiles
Site 1203, A1:32; A3:143–146
seismic profiles (continued) • soils, basement

Site 1204, A1:50; A4:102–104
Site 1205, A1:59; A5:28–29, 89–91
Site 1206, A1:69; A6:93–95
seismic reflection profiling, surveys, A3:46–47; A5:28–29; A6:24–25
seismic reflection surveys, profiles, B6:1–17
seismic section, two-way traveltime, B6:10–15
sericite
  lava, A3:15
  lithologic units, A4:11–19
  shallow resistivity logs, vs. depth, A3:131
  shear wave velocity logs, vs. depth, A3:131
  sheet lobes, volcanology, A3:18
sideromelane, basalt, A3:19–20
silica
  lava flows, A3:21
  vs. sodium oxide + potassium oxide, A1:38, 63, 72, 84, 93; A3:93, 142; A4:67; A5:67; A6:69; B1:37
silicates
  lava, A4:15–16
  lava flows, A6:12–13
silt
  lithologic units, A4:6
  photograph, A4:42
siltstone
  lithology, A6:5
  stratigraphy, A1:14–15
siltstone, calcareous, lithologic units, A5:6
siltstone, sandy, lithologic units, A5:6
siltstone, vitric, lithology, A3:14
siltstone, volcaniclastic, lithology, A3:14
simple pahoehoe lava
  internal structure, A5:12–13, 45
volcanology, A3:17–18
Site 432, paleoenvironment, A5:8
Site 735, magnetic logging, B5:8–9, 20–21
Site 884, basement, A4:18–19
Site 1203, A3:1–171
  alteration, A3:24–30
  background and scientific objectives, A3:1–3
  biostratigraphy, A3:10–11
  coring summary, A3:147–148
  downhole measurements, A3:40–46
  igneous petrology, A3:11–24
  magnetized formations, B5:1–22
  operations, A3:3–6
Paleocene–Miocene nanofossils, B4:1–12
paleolatitude, B1:7
paleomagnetism, A3:31–37
physical properties, A3:37–40
physical volcanology, A3:11–24
principal results, A1:10–12
rock magnetism, A3:31–37
site description, A3:1–171
underway geophysics, A3:46–47
weathering, A3:24–30
Site 1204, A4:1–125
  alteration, A4:20–24
  background and scientific objectives, A4:1–2
  biostratigraphy, A4:10–11
  coring, A4:105–106
igneous petrology, A4:11–19
lithostratigraphy, A4:4–9
operations, A4:2–4
Paleocene–Miocene nanofossils, B4:1–12
paleolatitude, B1:6–7
paleomagnetism, A4:24–30
physical properties, A4:30–33
physical volcanology, A4:11–19
principal results, A1:13–14
rock magnetism, A4:24–30
site description, A4:1–125
underway geophysics, A4:33–34
weathering, A4:20–24
Site 1205, A5:1–112
  alteration, A5:18–20
  background and scientific objectives, A5:1–2
  biostratigraphy, A5:7–8
  coring, A5:92
igneous petrology, A5:8–18
lithostratigraphy, A5:5–7
operations, A5:2–5
paleomagnetism, A5:21–25
physical properties, A5:25–28
physical volcanology, A5:8–18
principal results, A1:14–15
rock magnetism, A5:21–25
site description, A5:1–112
underway geophysics, A5:28–29
weathering, A5:18–20
Site 1206, A6:1–117
  alteration, A6:15–18
  background and scientific objectives, A6:1–2
  biostratigraphy, A6:5–6
  cores and recovery, A6:102
  coring, A6:96
  foraminiferal biostratigraphy, B2:1–4
igneous petrology, A6:6–15
lithostratigraphy, A6:5
operations, A6:3–4
paleomagnetism, A6:18–22
physical properties, A6:22–24
physical volcanology, A6:6–15
principal results, A1:15–17
rock magnetism, A6:18–22
site description, A6:1–117
underway geophysics, A6:24–25
weathering, A6:15–18
slumping
  lithologic units, A4:9
  photograph, A4:42
sodium
  lava flows, A3:21
  vs. zirconium, A3:94
sodium oxide
  lava, A5:16
  lava flows, A3:21; A6:14
  vs. depth, A1:40; A3:106
  vs. magnesium oxide, A1:73; A5:68; A6:70
  sodium oxide + potassium oxide, vs. silica, A1:38, 72, 84; A3:93–94, 142; A4:67; A5:67; A6:69; B1:37
  soils, basement, A5:10–11
soils, red-brown, photograph, A1:78
soils, red clay, photograph, A5:40, 44
strain bands, photomicrograph, A1:62; A5:54
strain lamellae, photomicrograph, A5:49
strontium
lava flows, A3:22–24
vs. magnesium oxide, A3:96–97
vs. zirconium, A3:94; A4:71; A6:72
See also titanium/strontium ratio; zirconium/strontium ratio
strontium isotopes
lava, B1:38
volcanism, B1:17
vs. age, A1:31
vs. seamount age, B1:39
subophitic texture, photomicrograph, A3:83; A4:53–54;
A5:53
subvariolitic texture, photomicrograph, A3:82
Suiko Seamount, paleolatitude, A1:5–7
sulfur, lithologic units, A5:97
superparamagnetic grains, basalt, A5:79

talc
lava, A3:15
photomicrograph, A6:37–38
tephra, lithology, A3:12–14
tephra clasts, volcanicastics, A3:19
Tertiary, lower
nannofossil zonation, A3:10–11
plate motion, A1:5–7
See also Cretaceous/Tertiary boundary
Thellier analysis, plagioclase, B1:32
thermal conductivity
lithologic units, A3:38–39, 166; A4:32, 122; A5:26–27,
109; A6:23, 114
vs. depth, A3:129; A4:98; A5:86; A6:90
thermoremanent magnetization
basement, A3:33–34; A4:29
lithologic units, A5:21–22
vs. natural remanent magnetization, B1:29
thorium logs, vs. depth, A3:132
titanium
basalt, A4:17–18
lava flows, A3:21–22; A6:15
vs. zirconium, A1:56; A3:94; A4:70; A6:72
titanium/barium ratio, vs. magnesium oxide, A5:71
titanium/strontium ratio, vs. magnesium oxide, A5:71
titanium/zirconium ratio
lava flows, A6:14–15
vs. depth, A1:39, 85–86; A3:98; A5:69; A6:30
titanium oxide
lava, A5:16–17
lava flows, A6:14
vs. magnesium oxide, A1:73; A3:97; A4:17, 68; A5:68;
A6:70
titanomaghemite
lava flows, A3:20
magnetic reversals, B1:6
See also maghemite/titanomaghemite lamellae
titanomagnetite
alteration, A5:15
basalt, A5:10
basement, A4:27–28
lava flows, A3:20–21; A4:16; A6:12–13
photomicrograph, A1:21, 89; A3:86–92; A4:55–57;
titanomagnetite, acicular, basalt, A3:20
titanomagnetite, dendritic, basalt, A3:20
titanomagnetite, skeletal octahedral and dendritic, photomicrograph, A6:53–54
trace elements
alteration, A4:22–23
basalt, A1:11; A4:18–19, 114–115
basement, A3:158–160; A6:106–107
comparison of Detroit Seamount with Mauna Kea
and Mauna Loa, A3:97
hotspots, A1:19–20
lava flows, A5:16–18, 101–103; A6:13–15
volcanism, B1:14–17
trachytic texture, photomicrograph, A1:62; A5:54
transitional lava
internal structure, A5:1–13
volcanic units, A6:11
tuff
lithology, A3:13–14
See also basalt tuff; hyaloclastite tuff; lapilli tuff

U
Ulatisian, biostratigraphy, B2:4
ulvöspinel
lava flows, A3:20
photomicrograph, A4:65
See also chrome spinel
underway geophysics
Site 1203, A3:46–47
Site 1204, A4:33–34
Site 1205, A5:28–29
Site 1206, A6:24–25
uranium logs, vs. depth, A3:132

V
variolitic textures, pillow lavas, A3:16
vein fillings
alteration assemblages, A4:20, 23; A5:18–19
photograph, A1:90; A3:104–105
vs. depth, A3:101–102; A5:73; A6:75
veins
Formation MicroScanning imagery, A1:81
photograph, A1:21, 80; A3:128
veins, calcite, photomicrograph, A3:78
velocity logs
vs. depth, A1:41; A3:131
See also compressional wave velocity logs; shear wave velocity logs
velocity profiles, hypothetical, a’a lava, A6:33
vesicle cylinders
photomicrograph, A4:56
volcanology, A3:18
vesicle fillings
  alteration assemblages, A4:20, 23; A5:18–19; A6:75
  photograph, A5:74; A6:76–77
  vs. depth, A3:100; A4:72–73; A5:73; A6:75
vesicles
  photomicrograph, A3:62, 84–85, 95; A4:55
  vs. depth, A3:57; A4:72–73; A5:73; A6:75
  See also megavesicles; pipe vesicles
vesicular sheets, volcanology, A3:18
vesicularity
  alteration, A5:19
  volcanology, A3:17–18
vesiculation, volcanology, A3:17
virtual axial dipole moment, vs. age, A1:30
virtual dipole moments, vs. age, B1:33
viscosity
  lava, A5:13
  vs. depth, A1:27
vitric ash, basaltic, photograph, A4:42
volcanic ash
  vs. depth, A5:36
  See also palagonite/volcanic ash ratio
volcanic centers, vs. age, B1:33
volcanic glass
  basalt, A5:10
  lava, A3:15; A5:15
  lithologic units, A5:5
  photograph, A1:35; A3:67, 128
  photomicrograph, A3:71
  vs. depth, A3:52, 57
  See also basalt glass
volcanic glass, altered, photograph, A4:46
volcanic glass, submarine basaltic, geomagnetism, B1:10–11
volcanic rocks
  basement, A6:8–14
  stratigraphy, A1:14–15
volcaniclastics
  alteration, A4:23–24; A6:17
  basement, A1:9–10
  Campanian nanofossils, B3:2–5
  lithologic units, A3:12–14, 155; A4:6; A5:6–7, 20
  nanofossils, A6:5–6
  petrography, A3:19
  photograph, A1:51
  remanent magnetization, A3:119–120
  well-logging, A3:43
volcanism
  age, B1:13–14
  environment, A1:83
volcanoes
  environment, B1:36
  evolution models, B1:35
volcanology. See physical volcanology
vugs, lithologic units, A5:6

W
wavelet analysis
  Formation MicroScanner imagery, B5:15
  well-logging, B5:4–7, 18

Y
ytrrium
  lava flows, A3:22
  vs. zirconium, A1:64; A4:71; A5:17, 72
  See also zirconium/ytrrium ratio
Z
zeolites
  alteration, A3:27–30; A4:21; A5:19; A6:16
  photograph, A1:79
  tuff, A3:13–14
  vs. depth, A3:99–100, 102; A5:73
zinc
  alteration, A3:29
  vs. zirconium, A3:108
zinc/zirconium ratio
  vs. depth, A3:107; A4:77–78; A5:75; A6:78
zirconium
  basalt, A4:17–18
  lava, A5:16–17
  lava flows, A3:21–22; A6:14–15
  vs. barium, A3:94; A4:71; A6:72
  vs. cobalt, A3:108
  vs. copper, A3:108
  vs. depth, A5:69
  vs. magnesium oxide, A1:73; A3:97; A5:68; A6:74
  vs. phosphorus, A3:94; A4:71
  vs. potassium, A3:94
  vs. potassium oxide, A3:108; A4:79
  vs. sodium, A3:94
  vs. strontium, A3:94; A4:71; A6:72
  vs. titanium, A1:56; A3:94; A4:70; A6:72
  vs. yttrium, A1:64; A4:71; A5:17, 72
  vs. zinc, A3:108
  vs. zirconium/ytrrium ratio, A1:64; A5:72
  See also cobalt/zirconium ratio; copper/zirconium ratio; titanium/zirconium ratio; zinc/zirconium ratio
zirconium/barium ratio, vs. magnesium oxide, A5:71
zirconium/strontium ratio, vs. magnesium oxide, A5:71
zirconium/ytrrium ratio, vs. zirconium, A1:64; A5:72
Zoophycos
  lithologic units, A3:8–9
  photograph, A3:53
**TAXONOMIC INDEX**

**A**

*abisectus, Cyclicargolithus*, Site 1203, A3:10
*aculeus, Ceratolithoides*, Site 1203, A3:11
*ampliaperta, Helicosphaera*, Site 1203, B4:4
*Aspidolithus parcus*
  - Site 1203, A3:11
  - Site 1204, A4:10–11

**B**

*barbadiensis, Discoaster*
  - Site 1203, A3:11; B4:3
  - Site 1206, A6:5
*belemnos, Sphenolithus*, Site 1203, B4:4
*bidens, Chiasmolithus*, Site 1205, A5:7
*bigelowii, Braarudosphaera*
  - Site 1205, A5:8
  - Site 1206, A6:5
*bijugatus, Zygrhablithus*, Site 1206, A6:5
*bisecta, Reticulofenestra*, Site 1203, A3:10; B4:3–4
*Blackites creber*, Site 1206, A6:5
*Blackites gladius s.l.*, Site 1206, A6:5–6
*bollii, Discoaster*, Site 1203, A3:10
*Braarudosphaera bigelowii*, Site 1205, A5:8
*Braarudosphaera discula*, Site 1205, A5:8
*brouweri, Discoaster*, Site 1203, A3:10
*Bulimina semicostata*, Site 1206, B2:2

**C**

*calcaris, Discoaster*, Site 1203, A3:10
*Caldicelis praemacintyrei*, Site 1203, A3:11
*Campylosphaera cf. Campylosphaera*, Site 1206, A6:5
*Campylosphaera dela*
  - Site 1205, A5:7
  - Site 1206, A6:5
*Catinaster coalitus*, Site 1203, B4:4
*Ceratolithoides aculeus*, Site 1203, A3:11
*Chiasmolithus bidens*, Site 1205, A5:7
*Chiasmolithus cf. Chiasmolithus solitus*, Site 1206, A6:5
*Chiasmolithus grandis*
  - Site 1203, A3:11
  - Site 1206, A6:5
*Chiasmolithus oamaruensis*, Site 1203, A3:10–11; B4:3
*Chiasmolithus solitus*, Site 1203, A3:11; B4:3
*Chiasmolithus sp.*, Site 1206, A6:6
*chiastus, Neochiastozygus*, Site 1205, A5:7
*Cibicidoides eocaenus*, Site 1206, B2:2
*Cibicidoides lauriae*, Site 1206, B2:2
*ciperoensis, Sphenolithus*, Site 1203, A3:10; B4:4
*coalitus, Catinaster*, Site 1203, B4:4
*Coccolithus crassus*
  - Site 1203, A3:11; B4:3
  - Site 1204, B4:5
*Coccolithus pelagicus*, Site 1206, A6:5–6
*concava, Micula*, Site 1204, A4:11

**D**

*decussata, Micula*
  - Site 1203, A3:11
  - Site 1204, A4:11
*delap, Campylosphaera*
  - Site 1205, A5:7
  - Site 1206, A6:5
*delap, Campylosphaera cf. Campylosphaera*, Site 1206, A6:6
*Discoaster barbadiensis*
  - Site 1203, A3:11; B4:3
  - Site 1206, A6:5
*Discoaster bollii*, Site 1203, A3:10
*Discoaster brouweri*, Site 1203, A3:10
*Discoaster calcaris*, Site 1203, A3:10
*Discoaster cf. Discoaster hamatus*, Site 1203, A3:10
*Discoaster druggii*, Site 1203, A3:10; B4:4
*Discoaster hamatus*, Site 1203, B4:4
*Discoaster kugleri*, Site 1203, B4:4
*Discoaster lodoensis*
  - Site 1203, A3:11; B4:3
  - Site 1204, A4:10; B4:5
  - Site 1206, A6:6
*Discoaster lodoensis Zone*, Site 1206, A6:6
*Discoaster mohleri*, Site 1204, A4:10; B4:5
*Discoaster multiradiatus*, Site 1204, A4:10
*Discoaster saipanensis*, Site 1203, B4:3
*Discoaster sublodoensis*
  - Site 1203, B4:3
  - Site 1204, A4:10; B4:5
*discula, Braarudosphaera*, Site 1205, A5:8
*distentus, Sphenolithus*, Site 1203, A3:10; B4:4
*druggii, Discoaster*, Site 1203, A3:10; B4:4

**E**

*Eiffellithus eximius*, Site 1203, A3:11; B3:5
*eminens, Toweius*, Site 1205, A5:7
*enormis, Pontosphaera*, Site 1203, B4:4
*entaster, Micrantholithus*, Site 1206, A6:5
*entaster, Micrantholithus cf. Micrantholithus*, Site 1205, A5:8
*eocaenus, Cibicidoides*, Site 1206, B2:2
*Ericsonia formosa*, Site 1203, B4:3
*Ericsonia subdisticha*, Site 1203, A3:11; B4:3
*eximius, Eiffellithus*, Site 1203, A3:11; B3:5
**Fasciculithus tympaniformis, Site 1204 • riedelii, Heliolithus, Site 1204**

**F**
- *Fasciculithus tympaniformis*, Site 1204, A4:10
- *floridanus*, *Cyclicargolithus*, Site 1203, B4:4
- *flos*, *Micrantholithus*, Site 1206, A6:5
- *formosa*, *Ericsonia*, Site 1203, B4:3
- *fulgens*, *Nannotetrina*
  - Site 1203, B4:3
  - Site 1204, A4:10; B4:5

**G**
- *gammation*, *Toweius*
  - Site 1205, A5:7
  - Site 1206, A6:5
- *gladius s.l.*, *Blackites*, Site 1206, A6:5–6
- *gothicum*, *Quadrum*, Site 1203, A3:11
- *grandis*, *Chiasmolithus*
  - Site 1203, A3:11
  - Site 1206, A6:5

**H**
- *hamatus*, *Discoaster*, Site 1203, B4:4
- *hamatus*, *Discoaster* cf. *Discoaster*, Site 1203, A3:10
- *Helicosphaera ampliaperta*, Site 1203, B4:4
- *Helicosphaera perch-nielseniae*, Site 1203, B4:4
- *Helicosphaera recta*, Site 1203, B4:4
- *Heliolithus kleinpellii*, Site 1204, A4:10
- *Heliolithus riedelii*, Site 1204, A4:10; B4:5
- *heteromorphus*, *Sphenolithus*, Site 1203, B4:4

**I**
- *Isthmolithus recurvus*, Site 1203, A3:11; B4:3

**K**
- *kleinpelli*, *Heliolithus*, Site 1204, A4:10
- *kugleri*, *Discoaster*, Site 1203, B4:4

**L**
- *laurisae*, *Cibicidoides*, Site 1206, B2:2
- *lodoensis*, *Discoaster*
  - Site 1203, A3:11; B4:3
  - Site 1204, A4:10; B4:5
  - Site 1206, A6:6
- *Lophodolithus nascens*, Site 1206, A6:6

**M**
- *Micrantholithus* cf. *Micrantholithus entaster*, Site 1205, A5:8
- *Micrantholithus entaster*, Site 1206, A6:5
- *Micrantholithus flos*, Site 1206, A6:5
- *Micrantholithus* spp., Site 1205, A5:8
- *Micula concava*, Site 1204, A4:11
- *Micula decussata*
  - Site 1203, A3:11
  - Site 1204, A4:11

**N**
- *Nannotetrina fulgens*
  - Site 1203, B4:3
  - Site 1204, A4:10; B4:5
- *Nannotetrina* sp., Site 1203, A3:11
- *nascens*, *Lophodolithus*, Site 1206, A6:6
- *Neochiastozygus chiastus*, Site 1205, A5:7
- *Neococcolithes protrusus*, Site 1205, A5:7
- *nitescens*, *Coronocyclo*-Site 1206, A6:5

**O**
- *oaamaruensis*, *Chiasmolithus*, Site 1203, A3:10–11; B4:3
- *orthostylus*, *Tribrachiatus*
  - Site 1203, A3:11; B4:3
  - Site 1204, A4:10; B4:5

**P**
- *parcus*, *Aspidolithus*
  - Site 1203, A3:11
  - Site 1204, A4:10–11
- *pelagicus*, *Coccolithus*, Site 1206, A6:5–6
- *perch-nielseniae*, *Helicosphaera*, Site 1203, B4:4
- *pertusus*, *Toweius*, Site 1205, A5:7
- *pinguis*, *Rhabdosphaera*
  - Site 1205, A5:7
  - Site 1206, A6:5
- *Pontosphaera enormis*, Site 1203, B4:4
- *praemacintyrei*, *Calcidiscus*, Site 1203, B4:4
- *protenus*, *Neococcolithes*, Site 1205, A5:7

**Q**
- *Quadrum gothicum*, Site 1203, A3:11
- *Quadrum sissinghii*, Site 1203, A3:11
- *Quadrum trifidum*
  - Site 1203, A3:11
  - Site 1204, A4:10–11; B4:4

**R**
- *recta*, *Helicosphaera*, Site 1203, B4:4
- *recurrus*, *Isthmolithus*, Site 1203, A3:11; B4:3
- *Reticulofenestra bisecta*, Site 1203, A3:10; B4:3–4
- *Reticulofenestra umbilica*, Site 1203, B4:3
- *Reticulofenestra umbilicus*, Site 1203, A3:10–11
- *Rhabdosphaera pinguis*
  - Site 1205, A5:7
  - Site 1206, A6:5
- *riedelii*, *Heliolithus*, Site 1204, A4:10; B4:5
S
saipanensis, Discoaster, Site 1203, B4:3
semicostata, Bulimina, Site 1206, B2:2
sissinghii, Quadrum, Site 1203, A3:11
solitus, Chiasmolithus, Site 1203, A3:11; B4:3
solitus, Chiasmolithus cf. Chiasmolithus, Site 1206, A6:5
Sphenolithus belemnos, Site 1203, B4:4
Sphenolithus ciperoensis, Site 1203, A3:10; B4:4
Sphenolithus distentus, Site 1203, A3:10; B4:4
Sphenolithus heteromorphus, Site 1203, B4:4
Sphenolithus moriformis, Site 1206, A6:5
Sphenolithus spiniger, Site 1206, A6:5
Sphenolithus spp., Site 1206, A6:6
subdistantia, Ericsonia, Site 1203, A3:11; B4:3
sublodoensis, Discoaster Site 1203, B4:3
Site 1204, A4:10; B4:5
swastica, Micula, Site 1204, A4:10
T
Toweius eminens, Site 1205, A5:7
Toweius gammation
Site 1205, A5:7
Site 1206, A6:5
Toweius pertusus, Site 1205, A5:7
Toweius spp., Site 1206, A6:6
Tribrachiatus contortus, Site 1205, A5:7–8
Tribrachiatus orthostylus
Site 1203, A3:11; B4:3
Site 1204, A4:10; B4:5
trifidum, Quadrum
Site 1203, A3:11
Site 1204, A4:10–11; B4:4
trifidus, Uniplanarius
Site 1203, B3:4–5
Site 1204, B4:4
tympaniformis, Fasciculithus, Site 1204, A4:10
U
umbilica, Reticulofenestra, Site 1203, B4:3
umbilicus, Reticulofenestra, Site 1203, A3:10–11
Uniplanarius trifidus
Site 1203, B3:4–5
Site 1204, B4:4
W
walbersdorfenensis, Helicosphaera, Site 1203, B4:4
Z
zones (with letter prefixes)
CC22, A1:10; 13; A4:10–11, 25; B3:5
CC22–CC23, A3:11; B4:4
CC22/CC23 boundary, Site 1203, B3:5
CC23, A1:13; A3:11; A4:10–11, 25; B3:5
NN1, Site 1203, B4:4
NN2, Site 1203, B4:4
NN2–NN5 interval, Site 1203, A3:10
NN4, Site 1203, B4:4
NN4/NN5 boundary, Site 1203, B4:4
NN6, Site 1203, B4:4
NN7, Site 1203, B4:4
NN8, Site 1203, B4:4
NN8–NN10 interval, Site 1203, A3:10
NP7, Site 1204, A4:10, 25; B4:5
NP8, Site 1204, A4:10, 25; B4:5
NP9, Site 1206, A6:6
NP10, Site 1205, A1:14
NP12, A1:10; A4:10, 25; A6:6; B4:3, 5
NP12–NP14, Site 1203, A3:11
NP13, A6:6; B4:5
NP13/NP14 boundary, Site 1203, B4:3
NP14, A1:16; A3:11; A6:5; B4:5
NP15, A1:16; A4:10, 25; A6:5; B4:5
NP15–NP16, Site 1203, A3:11
NP15/NP16 boundary, Site 1203, B4:3
NP16, Site 1203, B4:3
NP17, Site 1203, A3:11; B4:3
NP18, Site 1203, B4:3
NP18–N20, Site 1203, A3:11
NP19–NP20, Site 1203, B4:3
NP21, Site 1203, A3:11
NP21–N22, Site 1203, A3:11
NP22, Site 1203, B4:3
NP24, Site 1203, B4:4
NP24–NN1 interval, Site 1203, A3:10
NP24–NP25 interval, Site 1203, A3:10
NP25, Site 1203, B4:4
Zygrhablithus bijugatus, Site 1206, A6:5