INDEX TO VOLUME 204

This index covers both the *Initial Reports* and *Scientific Results* portions of Volume 204 of the *Proceedings of the Ocean Drilling Program*. References to page numbers in the *Initial Reports* are preceded by “A” followed by the chapter number with a colon (A1:) and to those in the *Scientific Results* (this volume) by “B” followed by the chapter number with a colon (B1:).

The index was prepared by Earth Systems, under subcontract to the Ocean Drilling Program. The index contains two hierarchies of entries: (1) a main entry, defined as a keyword or concept followed by a reference to the page on which that word or concept appears, and (2) a subentry, defined as an elaboration on the main entry followed by a page reference.

The index covers volume text, figures, and tables but not core-description forms (“barrel sheets”), core photographs, smear slide data, or thin section descriptions. Also excluded from the index are bibliographic references, names of individuals, and routine front matter.

The Subject Index follows a standard format. Geographical, geologic, and other terms are referenced only if they are subjects of discussion. A site chapter in the *Initial Reports* is considered the principal reference for that site and is indicated on the first line of the site’s listing in the index. Such a reference to Site 1244, for example, is given as “Site 1244, A3:1–132.”

The Taxonomic Index is an index relating to significant findings and/or substantive discussions, not of species names per se. This index covers three varieties of information: (1) individual genera and species that have been erected or emended formally, (2) biostratigraphic zones, and (3) fossils depicted in illustrations. A taxonomic entry consisting of both genus and species is listed alphabetically by genus and also by species. Biostratigraphic zones are listed alphabetically by genus; zones with letter prefixes are listed under “zones.”

SUBJECT INDEX

<table>
<thead>
<tr>
<th>A</th>
<th>See also dipole sonic waveforms; monopole sonic waveforms; waveforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>abyssal plains, age constraints, B3:4–5</td>
<td>acoustic properties, repressurized sediments, B26:6</td>
</tr>
<tr>
<td>accretionary complexes</td>
<td>advanced piston corer</td>
</tr>
<tr>
<td>deposition, A1:7–9</td>
<td>porosity, vs. depth, A4:86</td>
</tr>
<tr>
<td>gas transport in shallow sediments, B15:1–52</td>
<td>temperature, vs. time, A5:49</td>
</tr>
<tr>
<td>geology, B1:4–5</td>
<td>tools, B23:16–18</td>
</tr>
<tr>
<td>lithologic units, A3:9–10</td>
<td>advection</td>
</tr>
<tr>
<td>Seismic Profile OR89-Line 2, B1:28</td>
<td>calcium-depleted fluids, A8:13; A9:11–12</td>
</tr>
<tr>
<td>accretionary prisms</td>
<td>compaction, B15:10–11</td>
</tr>
<tr>
<td>clay mineralogy, B7:5</td>
<td>age, vs. iodine-129/iodine ratio, B14:22</td>
</tr>
<tr>
<td>gas hydrates, B15:19–20</td>
<td>age constraints, structural zones, B3:4–5</td>
</tr>
<tr>
<td>accretionary ridges</td>
<td>age vs. depth</td>
</tr>
<tr>
<td>age constraints, B3:4–5</td>
<td>Site 1244, A3:58; B15:32</td>
</tr>
<tr>
<td>dewatering, B3:7</td>
<td>Site 1245, A4:60</td>
</tr>
<tr>
<td>accretionary wedges</td>
<td>Site 1246, A5:27</td>
</tr>
<tr>
<td>age constraints, B3:4–5</td>
<td>Site 1247, A6:38</td>
</tr>
<tr>
<td>dewatering, B3:7</td>
<td>Site 1248, A7:35</td>
</tr>
<tr>
<td>acetate</td>
<td>Site 1249, A8:47</td>
</tr>
<tr>
<td>pore water, B17:1–20</td>
<td>Site 1250, A9:45</td>
</tr>
<tr>
<td>vs. depth, B17:10–16</td>
<td>Site 1251, A10:51</td>
</tr>
<tr>
<td>vs. temperature, B17:17</td>
<td>Site 1252, A11:34</td>
</tr>
<tr>
<td>acetogenesis, sediments, B17:5</td>
<td>alkaliinity</td>
</tr>
<tr>
<td>acoustic logs</td>
<td>carbon cycling, A7:11; A9:11</td>
</tr>
<tr>
<td>gas hydrates, B24:3</td>
<td>microbial methanogenesis, B15:14–16</td>
</tr>
<tr>
<td>vs. depth, A3:94; A4:93; A6:65; A9:71; A10:86; A11:30; B24:8–13, 23–36</td>
<td>organic matter decomposition, A3:17; A10:14–15</td>
</tr>
<tr>
<td></td>
<td>pore water, A4:14</td>
</tr>
</tbody>
</table>
VOLUME 204 SUBJECT INDEX
alcalinity (continued) • bromide, vs. depth

vs. depth, A3:59; A4:61, 66; A5:28; A6:39; A7:36; A8:48; A9:46; A10:52; A11:35; B15:36; B16:14–18; B19:9–10
vs. sulfate, B15:35
Alvin Canyon fault, sediments, B4:13
ammonium
organic matter decomposition, A3:17; A10:14–15
vs. depth, A3:59; A4:61; A5:28; A6:39; A7:36; A8:48; A9:46; A10:52; A11:35
anaerobic methane oxidation
carbon cycling, A7:10–11; A8:13; A9:11
gas hydrates, A1:6; A3:16
pore water, A6:10
redox, B15:9–10
sulfate/methane interface, A6:10–11
sulfate reduction, B15:11–14
Anticline A, seismic units, B2:7–8
Anticline B
seismic units, B2:6–7
tectonics, B2:9
Archaea. See bacteria-Archaea
Archie parameters, physical properties, B8:4–5
Astoria Fan
abyssal plain sediment seismic units, B2:6
clay mineralogy, B7:4
Atterberg limits, sediments, B12:6, 71
authigenesis, carbonates, A4:66

B
bacteria, fluorescence micrograph, A10:64
bacteria-Archaea, bacterial mats, A8:13
bacterial mats
bacteria-Archaea, A8:13
gas hydrates, A1:6
photograph, A1:54
barite, sediments, A3:18
barium
pore water, A6:11; A7:11; A8:13; A9:12; A10:15
pore water comparison of Sites 1244 and 1248, A7:39
remobilization, A3:67
sediments, A3:18–19
vs. depth, A3:60, 67; A4:62; A5:29; A6:40; A7:37, 39; A8:49; A9:47; A10:53, 57
bathymetry
Kascadia continental margin, B3:12
Hydrate Ridge, A1:51; B3:13; B10:9
Hydrate Ridge S, B1:26
Site 1244, A3:44
Site 1245, A4:35
Site 1246, A5:21
Site 1247, A6:27
Site 1248, A7:25
Site 1249, A8:36
Site 1250, A9:31
Site 1251, A10:39
Site 1252, A11:22
Beggiatoa, bacterial mats, A8:13
bioevents
age, A3:107; A4:105; A5:55; A6:71; A7:65; A8:82; A9:80; A10:96; A11:54; B8:28

See also diatom bioevents; nannofossil bioevents
biogenic component
lithologic units, A6:3–8
vs. depth, A3:4–8; A4:36–40, 42; A5:22; A6:29–30; A7:26; A8:37; A9:32–33, 38; A10:40–43; A11:23–24, 26
biogeochemistry, summary, A1:4–6
biological communities, gas hydrates, A1:10–11
biosphere, shallow marine, “peachy orange slime,” A10:19, 64
biostratigraphy
diatoms, Sites 1251–1252, B6:1–10
Site 1244, A3:10–13
Site 1245, A4:11–13
Site 1246, A5:5–7
Site 1247, A6:8–9
Site 1248, A7:7–9
Site 1249, A8:9–11
Site 1250, A9:9–10
Site 1251, A10:11–13
Site 1252, A11:9–11
summary, A1:60
Biot-Gassman theory, velocity logs, B22:11–12
biotite, lithologic units, A3:6–8
bioturbation
lithologic units, A4:4; A6:3–8; A7:3–4; A8:7–8; A9:5–7; A10:5–9; A11:4–7
photograph, A3:50; A4:54–55
Blake Ridge, sulfate, methane, alkalinity, magnesium, and calcium, B16:13
borehole breakouts
azimuth, B4:14
azimuth histograms, B4:12
lithologic units, A10:7–8
plan view, B4:10
resistivity-at-the-bit, A3:98
stress orientation, B4:1–14
boron
pore water, A7:11; A10:15–16
pore water comparison of Sites 1244 and 1248, A7:40
vs. depth, A3:59; A4:61; A5:28; A6:39; A7:36; A8:48; A9:46; A10:52
bottom-simulating reflector
accretionary complex, A1:56–57; A3:10
acetate and hydrogen, B17:5
chloride vs. depth, A10:55
gas transport, B15:8–9
Hydrate Ridge S, B2:11–12
infrared scanning, A7:16
iron sulfides, B18:6–7
map, B2:29
rock magnetism, B18:13
sediments, B11:8
seismic data, A8:60
seismic profiles, A6:28, 31; A7:27
temperature and depths, B15:50
thermal anomalies, A10:67
vs. chloride, A3:61
vs. depth, A5:23
breccia, silty clay, lithologic units, A3:8
bromide, vs. depth, B14:18
bromine
 pore water, B14:1–25
 See also iodine/bromine ratio
burial velocity, compaction, B15:10–11
burrow infills, lithologic units, A10:6
butane
gas hydrates, A7:13–14
 See also iso-butane; n-butane

C
calcareous component, vs. depth, A3:45–47; A4:36–40; A5:22; A6:29–30; A7:26; A8:37; A9:32–33, 38; A10:40–43; A11:23–24, 26
calcite
 lithologic units, A10:9
 oxygen isotopes, B13:6–8
 sediments, B11:17–19
 X-ray diffraction data, A6:34; A7:31; A9:37; A10:50; B12:71
calcite, high-magnesium, authigenic carbonates, B5:1–8
calcite crystals, photomicrograph, A5:24
calcite needles, authigenic, photomicrograph, A3:55
calcium
 bacterial mats, A8:13
 pore water, A9:12
 vs. depth, A3:60; A4:62, 66; A5:29; A6:40; A7:37; A8:49; A9:47; A10:53
 See also magnesium/calcium ratio
caliper logs
 logging-while-drilling, A3:90–93
 vs. depth, A4:88, 90–91; A5:50; A6:60, 62–63; A7:57; A8:71; A9:67–69; A10:81, 83–84; A11:48–49, 51
carbon, dissolved inorganic, carbon isotopes, B15:5–6; B20:1–16
carbon, dissolved organic, vs. depth, A4:61; A5:28; A6:39; A7:36; A8:48; A9:46; A10:52; A11:35
carbon, inorganic
 sediments, A3:21, 119; A4:116; A5:10, 60; A6:14, 77; A7:14, 70; A9:14, 88; A10:17, 106
 vs. depth, A3:72; A4:73; A5:37; A6:49; A7:46; A9:53; A10:63
carbon, organic
 authigenic carbonates, B5:7–8
 sediments, A3:21, 119; A4:17, 116; A5:10, 60; A6:14, 77; A7:14, 70; A9:14, 88; A10:17–18, 106
 vs. depth, A3:72; A4:73; A5:37; A6:49; A7:46; A9:53; A10:63
carbon, total
 authigenic carbonates, B5:7–8
 sediments, A3:21, 119; A4:17, 116; A5:10, 60; A6:77; A7:70; A9:88; A10:106
carbon/nitrogen ratio
 sediments, A3:21, 119; A4:17, 116; A5:10, 60; A6:14, 77; A7:70; A9:14, 88; A10:17–18, 106
 vs. depth, A3:72; A4:73; A5:37; A6:49; A7:46; A9:53; A10:63
carbon cycling, sediments, A7:10–11; A8:13; A9:11

carbonates
 magnesium-rich, fluoride, B16:8–9
 Cascadia accretionary complex

decomposed gas hydrates, A4:114; A5:59; A6:75; A7:69; A8:97; A9:86
 organic matter decomposition, A10:15
 pressure cores, A4:115; A6:76; A8:88–89; A9:87; A10:104–105
 vs. depth, B19:9–10
carbon isotopes
 anaerobic methane oxidation, B15:11–14
 carbon dioxide, B19:6
 dissolved inorganic carbon, B15:5–6, 30, 49; B20:1–16
 ethane generation mechanism, B15:16–17
 ethane-pentane hydrocarbons in void gas, B15:45
 methane and carbon dioxide, B15:5, 29, 42–44
 methane and carbon dioxide in hydrate-bound gas, B15:48
 methane and carbon dioxide in pressure core gas, B15:47
 vs. 1/carbon number ratio, B15:31
 vs. depth, B15:27; B20:7
 vs. methane/ethane ratio, B15:28
 carbon number reciprocal, vs. carbon isotopes, B15:31
 carbonate apron, seafloor observations, A1:4–6
 carbonate cementation, apparent overconsolidation, B8:9
 carbonate content
 authigenic carbonates, B5:2–3
 calcite, B5:6
 dolomite, B5:6
 lithologic units, A6:3–8; A10:8–9
 sediments, A3:119; A4:116; A5:60; A6:77; A7:70; A9:88
 vs. depth, A3:72; A4:45, 73; A5:37; A6:33, 49; A7:46; A9:53; A10:47, 63; B5:6; B11:13–15
 X-ray diffraction data, A6:34; B12:71
 carbonate pavement, seafloor observations, A1:4–6
 carbonate precipitates, lithologic units, A11:6–7
 carbonate spire, seafloor observations, A1:4–6
 carbonates
 authigenesis, A4:66
 concretions, A7:64
 dissolution, A11:10
 fluoride, B16:8–9
 mineral composition, A10:95
 oxygen isotopes, B13:6–8
 photograph, A1:54; A3:54
 reductive, B15:9–10
 X-ray diffraction data, A9:37
 carbonates, authigenic
 accretionary complexes, A11:7–9
 carbon cycling, A9:11
 fluoride, B16:8–9
 lithologic units, A3:4–8; A4:4; A6:3–4; A7:3–8; A9:4–5; A10:7–8; A11:6–7
 photograph, A5:24; A6:32; A11:32
 photomicrograph, A5:24
 sediments, B5:1–8
 carbonates, magnesium-rich, fluoride, B16:8–9
 Cascadia accretionary complex
 gas hydrates, B1:1–40
 geology, A1:4–6
Cascadia accretionary prism, authigenic carbonates, B5:1–8
Cascadia Basin, clay mineralogy, B7:4
Cascadia continental margin
bathymetry, B3:12
consolidation and sediment strength, B12:1–148
fluid evolution in accretionary prism, B13:1–20
summary, A1:1–75
Cascadia margin, north-south variability of deformation and fluid venting, B3:1–15
Cascadia subduction zone
clay mineralogy, B7:1–15
glacial environments, A7:7
Cascadia subduction zone
clay mineralogy, B7:1–15
glacial environments, A7:7
chemoherms, environment, A7:7
glacial sea levels, A7:7
Cascadia subduction zone
clay mineralogy, B7:1–15
glacial environments, A7:7
glaciolacustrine deposits, A7:7
fluid evolution in accretionary prism, B13:1–20
summary, A1:1–75
Cascadia margin, north-south variability of deformation and fluid venting, B3:1–15
Cascadia subduction zone
clay mineralogy, B7:1–15
glacial environments, A7:7
chemoherms, environment, A7:7
gas transport in shallow sediments, B15:1–52
Chloride
discrete excursions within gas hydrate stability zone, B13:16
dissolved in pore fluids, A3:111; A4:109; A5:7
fluid provenance, B13:5–6
gas hydrate proxies, B11:11–12
gas hydrates, A1:43; A3:13–16; A4:13–14; A5:7; A6:10; A7:10; A8:11–12; A9:10–11; A10:13–14; A11:11–12
Clay
vs. depth, A3:45–47; A4:36–40; A5:22; A6:29–30; A7:26; A8:37; A9:32–33; 35; A10:40–43; A11:23–24; B10:11–18; B11:13–15
clay, authigenic carbonate-rich, lithologic units, Site 1249, A8:7–8
clay, biogenic opal-rich, photomicrograph, A3:49
clay, diatom-bearing, lithologic units, A4:5; A7:3–6
clay, diatom-bearing silty, lithologic units, A5:3; A10:4–5
clay, diatom-rich
lithologic units, A4:5–7; A7:3–4; A8:6–8
photomicrograph, A4:49; A10:49
clay, diatom-rich silty, lithologic units, A5:3; A6:4–5; A9:4–5; A11:2–6
clay, foraminifer-rich, photomicrograph, A10:48
clay, foraminifer-rich silty, lithologic units, A11:5–7
clay, glauconite-rich, photomicrograph, A10:49
clay, hemipelagic environment, A9:8; A10:10–11
lithologic units, A6:3–4; A7:5–6
clay, indurated, lithologic units, A10:7–8
clay, nannofossil-bearing, lithologic units, A4:4; A6:6–7; A7:4–6
clay, nannofossil-bearing silty, lithologic units, A5:3
clay, nannofossil-rich, lithologic units, A4:5–7; A8:6–8; A9:7; A11:3–5
clay, nannofossil-rich foraminifer-bearing, photomicrograph, A10:48
clay, nannofossil-rich silty, lithologic units, A11:3–5
clay, silty
clay mineralogy, B11:1–19
lithologic units, A3:4–8; A4:4–11; A5:3–5; A6:3–8; A7:3–6; A8:6–8; A9:4–7; A10:4–9; A11:2–7
photomicrograph, A3:50; A10:28
clay, volcanic glass-rich silty, lithologic units, A9:4
clay mineralogy, sediments, B7:1–15; B11:1–19
clay minerals, lithologic units, A3:4–8; A6:3–8; A11:5–7
clay volume content, velocity logs, B22:6–7
Claystone
clay mineralogy, B7:1–15
lithologic units, A3:7–10; A4:7–9; A10:8–9
photomicrograph, A4:55
claystone, nannofossil-rich
photograph, A4:54
photomicrograph, A4:56
claystone, silty, lithologic units, A4:9–10; A10:8–9
cleavage planes, photograph, A8:45
Cline, vs. time, B23:21–28
coccolid cells, “peachy orange slime,” A10:19, 64
coefficient of consolidation, vs. vertical consolidation stress, B12:31–47
color change
lithologic units, A3:4–8; A5:3–4
photograph, A3:54
Columbia River, clay mineralogy, B7:4
Compaction
burial velocity, B15:10–11
fluid venting, B3:6
compression index, sediments, B12:7–8
compressional wave velocity
 correlation, B8:7
 repressurized sediments, B26:6
 sediments, A3:27, 126; A4:21–22, 124; A5:13, 64;
 A10:24, 113; A11:16
 seismic Horizon A, B1:32
 vs. consolidation stress, B26:15
 vs. depth, A3:80–81; A5:46
compressional wave velocity logs, vs. depth, A3:94;
 A6:65; A9:71; A11:48
computed tomographic analysis, gas hydrate shape and
 structure, B21:1–11
concretions, carbonate, location, A7:64
 See also temperature-pressure-conductivity tool
conglomerate
environment, A8:9
photograph, A4:57
consolidation, sediments, B12:1–148
contamination
 bacteria, A3:23; A4:19
 See also fluorescent microspheres; perfluorocarbon
 tracers
convoluted bedding, lithologic units, A7:5; A9:6–7;
 A10:5; A11:4–7
core logging, tools, A8:26–28
core quality, microbiology, A3:122
cores
 drilling data, B23:33–41
 recovery, A9:98
correlation
 logging-while-drilling, A1:61
 physical properties, B8:7
 physical properties and seismic data, A4:78
 cracks
 lithologic units, A3:4–8; A4:6
 photograph, B8:15
 X-ray line scanner images, A10:72
cross bedding, photograph, A4:57
cross sections, reconstruction, B2:28
crust. See top of oceanic crust
cycling, carbon, A7:10–11; A8:13; A9:11
density
 correlation, B8:7
 correlation with seismic data, A4:78; A5:42
 logging-while-drilling, A3:61; A4:41, 77, 92
 nuclear magnetic resonance logs, B27:8–9
 repressurized sediments, B26:5–6, 18
 sediments, A3:26–27, 123–125; A4:20–21, 122–123;
 A5:63; A6:80; A7:73; A8:18, 93; A9:17–18, 94;
 A10:22, 111–112; A11:15, 59
 vs. depth, A3:68; A4:51; A7:27; A9:34; B8:17–21
 vs. shear strength, B8:22
 vs. velocity, B8:22
density, bulk
 correlation with seismic data, A4:78
 seismic Horizon B, B25:17
 sulfide structure photograph, A6:54–55
density, gamma ray attenuation
 across seismic Horizon A, A4:79; A7:51
degassing, A8:68
 Fugro pressure corer, A8:70
 HYACE rotary corer, A8:69
 HYACINTH pressure core, B1:35–36
 logging-while-drilling, A1:61
 vs. depth, A3:77–79, 81, 88; A4:77; A5:41, 43–44;
 A6:52–53; A7:51–52; A8:59, 68–70; A9:56–57;
 A10:44, 70; A11:44–45
density, moisture and density bulk
 across seismic Horizon A, A4:79; A7:51
 vs. depth, A3:77; A4:77; A5:41; A6:52; A7:51–52;
 A8:59; A9:56; A10:70; A11:44
density, in situ bulk, seismic Horizon A, B1:31
density, logging-while-drilling
 across seismic Horizon A, A4:79; A7:51
 vs. depth, A3:77–78; A5:23, 41, 43–44; A6:31, 52, 64;
 A7:51–52; A8:59–60; A9:56–58; A10:70–71
density, moisture and bulk
 across seismic Horizon A, A4:79; A7:51
 chloride, A8:84
VOLUME 204 SUBJECT INDEX

density, moisture and density bulk (continued) • ethane

vs. depth, A3:77–79; A4:77; A6:52; A7:51–52; A8:59–60; A9:56, 58; A10:70; A11:44–45
density, normalized bulk, vs. depth, A10:74
density, sediment, vs. depth, A4:81; A5:12, 46; A6:15–16; A7:51–52; A8:59–60; A9:56, 58; A10:70; A11:44–45
density, time-after-bit, vs. depth, A4:88; A5:50; A6:60; A7:57; A8:71; A9:67; A10:81
density correction logs, vs. depth, A4:88; A6:60; A7:57; A8:71; A9:67; A10:81
density from core logs, vs. depth, A4:89, 92; A5:51, 53; A6:61–62, 64, 68; A7:58, 60; A8:72, 74; A9:70, 72, 75; A10:82, 85, 89; A11:48, 51
density logs
logging-while-drilling, A3:90–93, 100; A10:85
vs. depth, A4:89; A6:61–62, 68; A7:58, 60; A8:72, 74; A9:72, 75; A10:82–83, 89; A11:48, 51
density porosity logs
gas hydrate saturation, B27:17–22
logging-while-drilling, A3:99
vs. depth, A4:90; A5:52; A6:62, 67; A8:73; A9:74; A10:83; A11:48, 51
vs. resistivity, B22:20
vs. velocity, B22:19
vs. velocity ratio, B22:18
density wireline logs, vs. depth, A3:93; A4:92; A6:64; A9:70; A10:85
deoxyribonucleic acid, enrichment, A3:23
deposition, environment, A3:9–10; A4:10–11; A5:5; A6:7–8; A7:7; A8:9; A9:8; A10:9–11; A11:7–9
deuterium
fluid provenance, B13:5–6
methane, B15:46
vs. depth, B13:14, 17
dewatering
accretionary wedges, B3:7
fluid venting, B3:6
gas hydrates, B1:45–46
porosity, B8:9–10
diagenesis
organic matter, A3:17
pore water, A6:11
diagenesis, early
acetogenesis, B17:5
gas hydrates, B15:19–20
organic matter, A10:14–15
diatom bioevents, chart, A4:59; A7:34
diatoms
biostratigraphy, A3:10–11; A4:11–12; A5:6; A6:8; A7:8; A8:10; A9:9; A10:11; A11:9; B6:1–10
lithologic units, A3:4–8; A4:5–11; A5:3–4; A6:3–8; A8:6–8; A10:6–7; A11:3–5
dipole sonic waveforms, vs. depth, A4:93; A6:65; A9:71; A10:86; A11:50; B24:23–37
disconformities
lithologic units, A4:5
seismic Horizon Y, A6:7
discontinuities, environment, A10:10–11
dissolution, carbonates, A11:10
dolomite
authigenic carbonates, B5:2–3
lithologic units, A10:9

doxygen isotopes, B13:6–8
X-ray diffraction data, A6:34; A10:50
domes
seismic units, B2:7–8
tectonics, B2:10
downhole logging
gas hydrate proxies, B1:12–13; B22:1–25
Site 1244, A3:34–40
Site 1245, A4:26–33
Site 1246, A5:15–19
Site 1247, A6:19–25
Site 1248, A7:19–23
Site 1249, A8:29–33
Site 1250, A9:22–29
Site 1251, A10:30–37
Site 1252, A11:17–20
downhole measurements
Site 1244, A3:29–33
Site 1245, A4:22–26
Site 1246, A5:14–15
Site 1247, A6:17–19
Site 1248, A7:18–19
Site 1249, A8:20–28
Site 1250, A9:19–22
Site 1251, A10:25–30
Site 1252, A11:16–17
dynamics, gas hydrates, B1:5–10

echo sounder data, A1:53
Eel River Basin, methane/ethane ratio in void gas samples, B13:40
elastic constants, velocity logs, B22:24
elastic models, parameters, B24:38
elastic properties, gas hydrates, B24:4
electrical conductivity, uncalibrated, gas hydrate dissociation, A8:61
erosional surfaces, lithologic units, A10:6
Escanaba Trough, methane/ethane ratio, B13:38
ethane
core void gas, A4:112–113; A5:58; A6:74; A7:68; A8:53, 86; A9:51, 84–85; A10:61, 102–103; A11:40, 57
core void gas vs. depth, A3:113–114; A5:35; A6:46
decomposed gas hydrates, A4:114; A5:59; A6:75; A7:69; A8:97; A9:86
fractionation by gas hydrate formation, B13:17–19
gas hydrates, A1:45
generation mechanism, B15:16–17
geothermal gradient, B15:38
pressure cores, A4:115; A6:76; A8:88–89; A9:87; A10:104–105
sediments, A3:19–20; A4:16–17, 110–111; A5:8–9, 57; A6:12–13, 73; A7:12, 67; A8:14–15, 85; A9:12–13, 83; A10:16–17, 100–101; A11:13, 56
vs. depth, A3:68; A4:68, 70; A5:33; A6:44, 46–48; A7:41–45; A8:52; A9:50–53; A10:59, 61–62; A11:38, 40–41
See also methane/ethane ratio
VOLUME 204 SUBJECT INDEX

ethylene • gas hydrate stability zone

<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethylene sediments</td>
<td>A3:19; A4:16–17, 110–111; A5:8–9, 57; A6:12, 73; A7:67; A8:14, 85; A9:12, 83; A10:16, 100–101; A11:56</td>
</tr>
<tr>
<td>vs. depth</td>
<td>A6:44; A7:41; A8:52; A9:50; A10:59; A11:38</td>
</tr>
<tr>
<td>Fabric</td>
<td>B1:14–15</td>
</tr>
<tr>
<td>Fabric, gas hydrates</td>
<td>B1:14–15</td>
</tr>
<tr>
<td>Fabric, scaly</td>
<td>B2:9–111</td>
</tr>
<tr>
<td>Fault F1</td>
<td>B2:7</td>
</tr>
<tr>
<td>Fault F2</td>
<td>map, B2:24</td>
</tr>
<tr>
<td>Fault System E</td>
<td>seismic units, B2:8</td>
</tr>
<tr>
<td>Faults</td>
<td>gas hydrate stability zone, B3:6–8</td>
</tr>
<tr>
<td>Faults, normal deposition</td>
<td>A5:5</td>
</tr>
<tr>
<td>Faults, strike-slip</td>
<td>deformation age constraints, B3:4–5</td>
</tr>
<tr>
<td>Faults, thrust fluid venting distribution</td>
<td>B3:5–6</td>
</tr>
<tr>
<td>Gas hydrate stability zone</td>
<td>B2:12–13</td>
</tr>
<tr>
<td>Seismic Horizon Y</td>
<td>A6:7</td>
</tr>
<tr>
<td>Feldspar</td>
<td>lithologic units, A3:4–8; A4:6–8; A6:3–8; A7:5–6; A10:8–9; A11:5–7</td>
</tr>
<tr>
<td>Sediments, B1:8, 17–19</td>
<td></td>
</tr>
<tr>
<td>Fluid evolution, isotopes</td>
<td>B13:3–4</td>
</tr>
<tr>
<td>Fluid flow, gas hydrates</td>
<td>A1:43–44</td>
</tr>
<tr>
<td>Fluid provenance, chloride and deuterium</td>
<td>B13:5–6</td>
</tr>
<tr>
<td>Fluid transport, iodine and bromine</td>
<td>B14:1–25</td>
</tr>
<tr>
<td>Fluid venting distribution</td>
<td>B3:5–6</td>
</tr>
<tr>
<td>History, B3:6</td>
<td></td>
</tr>
<tr>
<td>Fluorescent microspheres, bacteria</td>
<td>A3:23; A4:19; A8:17; A9:15–16; A10:19</td>
</tr>
<tr>
<td>Fluoride</td>
<td>pore water, B16:1–22</td>
</tr>
<tr>
<td>vs. depth</td>
<td>B16:14–20</td>
</tr>
<tr>
<td>Fluoride, dissolved, methane-charged sediments</td>
<td>B16:1–22</td>
</tr>
<tr>
<td>Flux, distributed low</td>
<td>gas hydrates, B1:6–7</td>
</tr>
<tr>
<td>Flux, focused high</td>
<td>transport-dominated regime, B1:7–8</td>
</tr>
<tr>
<td>Fold F</td>
<td>map, B2:24</td>
</tr>
<tr>
<td>Seismic units, B2:6–7</td>
<td></td>
</tr>
<tr>
<td>Tectonics, B2:9–10</td>
<td></td>
</tr>
<tr>
<td>Folding, thrust, growth strata</td>
<td>B2:19</td>
</tr>
<tr>
<td>Folds, drag</td>
<td>tectonics, B2:9</td>
</tr>
<tr>
<td>Foraminifers</td>
<td>lithologic units, A3:5–8; A4:4–11; A6:3–8; A10:6–7; A11:4–7</td>
</tr>
<tr>
<td>Photograph, A4:57; A6:37; A10:48</td>
<td></td>
</tr>
<tr>
<td>Photomicrograph, A4:58; A7:30</td>
<td></td>
</tr>
<tr>
<td>Formation factor, vs. porosity</td>
<td>B8:16</td>
</tr>
<tr>
<td>Formation MicroScanner imagery correlation</td>
<td>A11:19–20</td>
</tr>
<tr>
<td>Resistivity-at-the-bit images</td>
<td>A6:23; A9:27; A10:35</td>
</tr>
<tr>
<td>Seismic Horizon A</td>
<td>A4:95</td>
</tr>
<tr>
<td>Turbidite</td>
<td>A4:96</td>
</tr>
<tr>
<td>vs. depth</td>
<td>A4:91; A6:63, 66; A9:69, 73; A10:84; A11:49, 51</td>
</tr>
<tr>
<td>Well-logging units</td>
<td>A4:30–31</td>
</tr>
<tr>
<td>Fractures</td>
<td>gas hydrate stability zone, B3:6–8</td>
</tr>
<tr>
<td>Lithologic units, A3:4–8</td>
<td></td>
</tr>
<tr>
<td>“peachy orange slime,”</td>
<td>A10:19, 64</td>
</tr>
<tr>
<td>Free gas saturation, cementation model</td>
<td>B24:14–15</td>
</tr>
<tr>
<td>Free gas saturation vs. depth, velocity</td>
<td>B22:22–23</td>
</tr>
<tr>
<td>Free gas zone</td>
<td>gas hydrates, A1:10–11, 45</td>
</tr>
<tr>
<td>Velocity logs</td>
<td>B22:1–25</td>
</tr>
<tr>
<td>Friction angle, internal, vs. axial strain</td>
<td>B12:49, 51, 53, 55, 57, 59, 61, 63, 65, 67</td>
</tr>
<tr>
<td>Fugro pressure corer, tools, A3:32–33; A4:26; A8:25–26; A9:22; A10:29–30</td>
<td></td>
</tr>
<tr>
<td>Fulmar fault, accretionary prisms</td>
<td>B14:5</td>
</tr>
<tr>
<td>Gamma ray logs</td>
<td>logging-while-drilling, A3:90–93, 100; A4:92; A6:64; A9:70</td>
</tr>
<tr>
<td>vs. depth, A4:89–92; A5:51, 53; A6:61–64, 68; A7:58, 60; A8:72, 74; A9:68–70, 72, 75; A10:82–85, 89; A11:48–49, 51</td>
<td></td>
</tr>
<tr>
<td>See also uranium-free gamma ray logs</td>
<td></td>
</tr>
<tr>
<td>Gamma ray wireline logs, vs. depth</td>
<td>A4:92; A6:64; A9:70; A10:85</td>
</tr>
<tr>
<td>Gas expansion</td>
<td>lithologic units, A3:4–8; A4:6</td>
</tr>
<tr>
<td>Photograph, A8:41–42; B8:15</td>
<td></td>
</tr>
<tr>
<td>Gas expansion cracks, photograph, B8:15</td>
<td></td>
</tr>
<tr>
<td>Gas hydrate anomalies, thermal anomalies</td>
<td>A5:40; A10:65</td>
</tr>
<tr>
<td>Gas hydrate dissociation</td>
<td>boron, A7:11</td>
</tr>
<tr>
<td>Photograph, A3:57; A7:28; A8:41–42, 46, 51</td>
<td></td>
</tr>
<tr>
<td>Physical properties, A7:17–18; A8:19–20</td>
<td></td>
</tr>
<tr>
<td>Resistivity, A7:54</td>
<td></td>
</tr>
<tr>
<td>Uncalibrated electrical conductivity, A8:61</td>
<td></td>
</tr>
<tr>
<td>Gas hydrate occurrence zone correlation with grain size, B10:19–20</td>
<td></td>
</tr>
<tr>
<td>Isothermal remanent magnetization, B18:13</td>
<td></td>
</tr>
<tr>
<td>Sediment grain size, B10:4</td>
<td></td>
</tr>
<tr>
<td>Gas hydrate proxies intercalibration, B1:10–13</td>
<td></td>
</tr>
<tr>
<td>Occurrence, A1:42–43</td>
<td></td>
</tr>
<tr>
<td>Gas hydrate saturation cementation model, B24:14–15</td>
<td></td>
</tr>
<tr>
<td>Density porosity logs, B27:17–22</td>
<td></td>
</tr>
<tr>
<td>Nuclear magnetic resonance logs, B27:8–9</td>
<td></td>
</tr>
<tr>
<td>Gas hydrate saturation vs. depth, shear wave velocity, B22:21</td>
<td></td>
</tr>
<tr>
<td>Gas hydrate stability zone acetate and hydrogen, B17:4–6</td>
<td></td>
</tr>
<tr>
<td>Chloride concentration, A3:13–16</td>
<td></td>
</tr>
<tr>
<td>Discrete chloride excursions, B13:16</td>
<td></td>
</tr>
</tbody>
</table>
fractures, B3:6–8
gas transport, B15:7–8
Hydrate Ridge S, B1:18–19
infrared scanning, A7:16
lateral heterogeneity, B1:9–10
seafloor observations, A1:5–6
seismic profiles, B2:11–12
tectonic controls, B2:11–12
transport-dominated regime, B1:7–8
velocity logs, B22:12–13
See also methane/seawater/hydrate stability zone
gas hydrates
acetate and hydrogen, B17:1–20
amount, B22:11
average content in sediments, B1:38
chloride, A3:13–16; A4:13–14; A5:7; A6:10; A7:10;
A8:11–12; A9:10–11; A10:13–14; A11:11–12
degassing, B23:10
distribution and dynamics, B1:1–40
dynamics, B1:5–10; B15:6
elastic properties, B24:4
estimates using chloride concentration profile, A3:63–64
ethane fractionation, B15:17–19
gases from decomposition, A3:117
geochmistry, A3:118
hydrocarbons, A5:10; A7:13–14
infrared imagery, A4:120–121; A5:62; A6:79; A7:61,
72; A8:92; A9:92–93; A10:20–22, 110; A11:58
iodine and bromine, B14:1–25
iron sulfide rock magnetism, B18:1–33
isotope anomalies, B13:4
lithologic effects, B1:8–9
lithologic units, A10:7
microbiology, B1:16–18
near-offset vertical seismic profiles, B25:7
nuclear magnetic resonance logs, B27:1–22
Oregon continental margin, A1:1–75
past presence, B1:16
pressure cores, A3:20; A4:17; A6:13–14; A8:15; A9:13–14,
19–21; A10:17
resistivity-at-the-bit, A3:95; A8:75
sediment granulometry, B10:1–30
sedimentary evidence, A3:8–9; A4:10; A5:4–5; A7:6–7;
A8:8–9; A9:7–8; A10:9; A11:7
seismic Horizon A, B1:32
seismic profiles, B1:27–28; B9:15
shape and structure, B21:1–11
slope stability, A1:10
sonic velocity, B24:1–38
stratigraphic and structural controls, B2:11–12
structure and fabric, B1:14–15
sulfate/methane interface, A3:16–17
sulfur isotopes, B19:4–6
velocity logs, B22:1–25
vs. depth, A4:104; B1:32, 34
A7:22–23; A8:32–33; A9:28–29; A10:36; A11:20
gas hydrates, disseminated, computed tomographic
analysis, B21:2–3
gas hydrates, in pore space, vs. depth, A4:63; A5:30;
A6:41; A7:38; A9:48
gas hydrates, layer, computed tomographic analysis,
B21:3, 8
gas hydrates, massive, computed tomographic analysis,
B21:3, 10
gas hydrates, nodule, computed tomographic analysis,
B21:3, 9
gas hydrates, reaction-dominated
microbial metabolites, B15:9–19
systems, B1:6–7
gas hydrates, transport-dominated, systems, B1:7–8
gas hydrates, veinlets, computed tomographic analysis,
B21:3, 6
gas hydrates, veins
computed tomographic analysis, B21:3, 7
photograph, A1:54
gas transport
bottom-simulating reflector, B15:8–9
gas hydrate stability zone, B15:7–8
shallow sediments, B1:5–12
shallow water, A3:20–22, 110; A11:58
geochemical anomalies, gas hydrate proxies, B1:11–12
geochemistry
gas hydrates, A1:10
pore water, A3:13–19; A4:13–15, 106–108; A5:7–8, 56;
A6:9–12, 72; A7:9–12, 66; A8:11–13, 83; A9:10–
12, 81–82; A10:13–16, 97–99; A11:11–12, 55
glacialiation, signals in shallow interstitial waters, B13:4–5
glass shards
lithologic units, A3:7–8
photomicrograph, A1:59; A3:52
glauconite
lithologic units, A3:7–8
photomicrograph, A1:59; A3:52
geology
Cascadia subduction zone, B1:3–5
summary, A1:4–6
glacialiation, signals in shallow interstitial waters, B13:4–5
geophysical surveys, calibration, A1:10
geothermal gradient
ethane, B15:38
summary, B1:39; B9:7–10, 26
glacialiation, signals in shallow interstitial waters, B13:4–5
lithologic units, A3:7–8
photomicrograph, A1:59; A3:52
photomicrograph, A3:56; A4:46, 58; A7:30
vs. depth, A4:45; A10:47; A11:30
lithologic units, A5:3–4; A10:4–5
apparent overconsolidation, B8:9
correlation with gas hydrate occurrence, B10:20
region hydrates, B10:4–7
sediments, B11:1–19
soils, B12:20
statistical correlation with gas hydrate occurrence, B10:19, 30
granules, clay-rich, lithologic units, A10:5
greigite, demagnetization, B18:5–7
growth strata, thrust folding, B2:19
gypsum, lithologic units, A4:9
halogens, pore water, B14:1–25
heat flow
based on age of subducting oceanic crust and thickness of overlying sediments, B9:24
Hydrate Ridge S, B1:15–16
summary, B1:39; B9:7–10, 26
vs. deformation front, B9:24
heat transfer, radial, models, B23:15
helium, pore water, B17:20
heterogeneity, lateral, gas hydrate stability zone, B1:9–10
hexane
core void gas, A9:51
decomposed gas hydrates, A4:114
See also iso-hexane; n-hexane
Holocene
lithologic units, A4:4; A5:3; A6:3–4; A7:3–4; A8:6–7; A9:4; A10:4–5; A11:2–5
See also Pleistocene/Holocene boundary
HYACE rotary corer operations, tools, A4:25–26; A8:24–25; A9:21–22; A10:28–29
HYACINTH
gamma ray attenuation density, B1:35–36
pressure coring, A3:33, 131; A4:24–25, 130; A8:23, 97; A9:21–22, 99; A10:27–30, 118
Hydrate Ridge
authigenic carbonates, B5:1–8
biogeochemistry, A1:4–6
clay mineralogy, B7:1–15
consolidation and sediment strength, B12:1–148
depth-towed sidescan sonar imagery, B3:16
dissolved fluoride, B16:1–22
dissolved hydrogen sulfide and sulfur isotopes in pore water, B19:1–13
fluid evolution in accretionary prism, B13:1–20
gas hydrates estimated from velocity logs, B22:1–25
halogen concentration in interstitial waters, B14:1–25
interstitial water isotopes, B13:1–20
isotopic characterization of dissolved inorganic carbon, B20:1–16
near-offset vertical seismic experiments, B25:1–23
north-south variability of deformation and fluid venting, B3:1–15
nuclear magnetic resonance logging, B27:1–22
physical properties of near-surface sediments, B8:1–29
physical properties of repressurized sediments, B26:1–19
rock magnetics of iron sulfides, B18:1–33
sediment granulometry and gas hydrates, B10:1–30
shape and structure of gas hydrates, B21:1–11
sonic velocity, B24:1–38
stress orientation, B4:1–14
structure map, B3:14
tectonics, A1:51
temperature-pressure-conductivity tool, B23:1–41
Hydrate Ridge N, seaward vergent structural style, B3:1–8
Hydrate Ridge S
acetate and hydrogen in pore fluids, B17:1–20
gelogic history, B1:3–5
grain-size and sediment bulk and clay mineralogy of summit and flanks, B11:1–19
landward vergent structural style, B3:1–8
location, B2:17
microbial methane generation and gas transport, B15:1–52
seismic sequence stratigraphy and tectonic evolution, B2:1–29
subsurface temperature, B9:1–25
thermal regime, B1:15–16
water temperature, A1:53
hydraulic conductivity, vs. void ratio, B12:31–47
hydrocarbons
core void gas, A4:112–113; A5:58
gas hydrates, A5:10; A7:13–14
hydrogen
pore water, B17:1–20
vs. depth, B17:10–16
hydrogen index, sediments, A3:120
hydrogen isotopes
methane and carbon dioxide, B15:5
pore water, B13:3–4
hydrogen sulfide
bacterial mats, A8:13
core void gas, A4:112–113; A7:68; A10:102–103
decomposed gas hydrates, A5:59; A7:69; A9:86
sulfur isotopes, B19:1–13
vs. depth, B19:9–10
hydrogen sulfide, dissolved, pore water, B19:1–13
hydrologic properties, sediment cores, B1:13–14
I
I layers, grain size and gas hydrates, B10:4
ice sheets, gas hydrates, B13:8
illite
lithologic units, A4:9; A10:8
sediments, B7:5
vs. depth, B7:12–14
impedance, downcore seismic, reflection coefficients, B8:8
impedance, seismic, vs. depth, B8:24
induration, lithologic units, A4:7
infrared anomalies
correlation with sediment grain size, B10:4–5, 23–24
vs. depth, B11:13–16
infrared imagery
cores, A1:62; A3:73
gas hydrates, A6:79; A7:72; A8:92; A9:92–93; A10:20–22, 110; A11:58
nodular texture, A8:56
veins, A8:56
infrared scanning
gas hydrate proxies, B1:11
intercalibration, gas hydrate proxies, B1:10–13
iodide, vs. depth, B14:18
iodine, pore water, B14:1–25
iodine-127, pore water, B14:3–4, 8
iodine-129/iodine ratio
vs. age, B14:22
vs. depth, B14:20–21
iodine/bromine ratio, vs. depth, B14:19
iodine isotopes, pore water, B14:1–25
iron
correction between Sites 1244 and 1246, A5:32
microorganisms, A3:22
pore water, A5:8; A6:11; A10:15
sediments, A3:18
vs. depth, A3:59; A4:61; A5:8; A6:39; A7:36; A8:48; A9:46; A10:52, 58
iron sulfides
lithologic units, A7:3–6; A9:5; A11:3–5
pore water, A5:8
rock magnetism, B18:1–33
iso-butane
core void gas, A4:112–113; A5:58; A6:74; A7:68; A8:53, 86; A9:51, 84–85; A10:61, 102–103; A11:57
core void gas vs. depth, A6:46
decomposed gas hydrates, A4:114; A5:59; A6:75; A7:69; A8:97; A9:86
pressure cores, A4:115; A6:76; A8:88–89; A9:87; A10:104–105
vs. depth, A4:70; A7:42–43; A10:61
iso-hexane
core void gas, A6:74; A7:68; A9:84–85
core void gas vs. depth, A6:46
decomposed gas hydrates, A9:86
pressure cores, A9:87; A10:104–105
iso-pentane
core void gas, A5:58; A6:74; A7:68; A8:53, 86; A9:51, 84–85
decomposed gas hydrates, A8:97
pressure cores, A6:76; A8:88–89; A9:87
isopach maps, seismic units, B2:26
isotopes
anomalies with gas hydrates, B13:3–4
gas hydrates, A1:10
geological and geochemical constraints, B13:1–20
pore water, B13:1–20; B15:6
isotopic fractionation factor
deuterium, B13:6
oxygen isotopes, B13:7

Juan de Fuca plate, geology, A1:4; B1:3–5
kaolinite
sediments, B7:5
vs. depth, B11:13–16
laminations, lithologic units, A3:7–8; A6:6–7
laminations, planar, photograph, A4:55, 57
landslides, accretionary complexes, A11:7–9
Leg 204
coring summary, A1:73–74
operational summary, A1:11–14, 75
site summary, A1:72; B1:37
liquid limit, vs. plasticity index, B12:19
lithium
correction between Sites 1244 and 1246, A5:31
cmparison of Sites 1245 and 1250, A9:49
pore water, A4:15; A5:8; A6:11–12; A9:12; A10:15
sediments, A3:17–18
seismic Horizon A, A6:12, 43; A9:12
vs. depth, A3:59; A4:61, 67; A5:28, 31; A6:39, 43; A7:36; A8:48; A9:46, 49; A10:52, 54
lithium/chloride ratio, vs. depth, A3:62
lithofacies, hemipelagic clay, B11:8
lithologic units
clay mineralogy, B11:1–19
correlation, B2:18; B7:9
Site 1244, A3:4–8
Site 1245, A4:4–10
Site 1246, A5:3–4
Site 1247, A6:3–7
Site 1248, A7:3–6
Site 1249, A8:6–8
Site 1250, A9:4–7
Site 1251, A10:4–9
Site 1252, A11:2–7
stress orientation, B4:1–14
Unit I, A3:4–5; A4:4; A5:3–4; A9:4; A10:4–5; A11:2–5
Unit I–II, A7:3–4; A8:6–7
Unit II, A3:5–7; A4:4–5; A5:3–4; A6:4–5; A9:5; A10:5–7; A11:5
Unit III, A3:7–8; A4:5–7; A6:5–7; A7:4–6; A8:7–8; A9:5–7; A10:7–9; A11:5–7
Unit IV, A4:7–8
Unit V, A4:9–10
lithology
gas hydrates, A1:45; B1:8–9
lithologic Unit V, A4:103
summary, A1:60; A3:45–47; A4:36–40; A5:22; A6:29–30; A7:26; A8:37; A9:32–33; A10:40–43; A11:23–24
vs. depth, A4:36–40; A5:22; A6:29–30; A7:26; A8:37; A9:32–33; A10:40–43; A11:23–24
lithostratigraphy
Site 1244, A3:4–10
Volume 204 Subject Index

Site 1245, A4:3–11
Site 1246, A5:2–5
Site 1247, A6:2–8
Site 1248, A7:2–7
Site 1249, A8:2–7
Site 1250, A9:3–8
Site 1251, A10:3–11
Site 1252, A11:2–9
summary, A3:45–47

load structures, environment, A7:7
logging-while-drilling
comparison with wireline logging, A3:36; A4:29; A6:21–22; A9:25–26; A10:33–34
density, A1:61
gamma density, A1:61
log interpretation, A7:19–20
magnetic susceptibility, A1:61
porosity logs, A3:99
quality control, A8:29–30; A9:23–24; A10:30–31
quality control logs, A3:89
resistivity, A1:61
seismic data, A1:61
stress orientation, B4:1–14
summary, A3:90; A5:16; B27:2–3
tools, B4:9; B27:12–13
loss on ignition, sediments, B12:6

M
magnesium
pore water, A6:11; A8:13
vs. depth, A3:60; A4:62, 66; A5:29; A6:40; A7:37; A8:49; A9:47; A10:53
magnesium/calcium ratio, vs. depth, B16:14–18
magnesium carbonate
authigenic carbonates, B5:2–3
vs. depth, B5:5
magnetic intensity, vs. temperature, B18:12
magnetic susceptibility
across seismic Horizon A, A4:79
anomaly photograph, A9:60
comparison of loop sensor and point sensor, A10:72
correlation with seismic data, A4:78; A5:42
logging-while-drilling, A1:61
sediments, A3:27; A4:21; A5:12; A6:16; A7:17; A8:18; A9:18; A10:22–23; A11:15
seismic Horizon B, B1:33
seismic Horizon Y, A9:61
turbidite, A9:61
vs. depth, A3:77; A4:51, 77; A5:41, 43–44; A6:35, 52–53; A7:51–52; A8:59–60; A9:43, 57–58; A10:44, 58, 71; A11:44–45; B8:17–19, 21; B11:13–15
magnetic susceptibility Event 1, sedimentology and physical properties, A5:43
magnetic susceptibility Event 2, sedimentology and physical properties, A5:44
magnetite, demagnetization, B18:5–6
major elements, pore water, A3:17–19; A4:14–15; A5:8; A6:11–12; A7:11–12; A8:13; A9:11–12; A10:15–16
manganese
pore water, A6:11

sediments, A3:18
vs. depth, A3:60; A4:62; A5:29; A6:40; A7:37; A8:49; A9:47; A10:53
mean stress, vs. shear stress, B12:50, 52, 54, 56, 58, 60, 62, 64, 66
mean stress, normalized, vs. normalized shear stress, B12:49, 51, 53, 55, 57, 59, 61, 63, 65, 67
mechanical properties, sediment cores, B1:13–14
medium resistivity logs, vs. depth, A4:90; A6:62; A10:83; A11:48, 51
metal reducers, enrichment, A3:23
methane
acetogenesis, B1:7:6
advection, A7:11
alkalinity, B15:14–16
carbon cycling, A7:10–11
carbon isotopes, B15:5; B20:3
concentration in headspace gases, A3:112; A6:59
concentration in sediments, A3:87
converted to microliters per liter, A3:115–116
core void gas, A4:112–113; A5:58; A6:74; A7:68; A8:53, 86; A9:51, 84–85; A10:61, 102–103; A11:40, 57
core void gas vs. depth, A3:113–114; A5:35; A6:46
decomposed gas hydrates, A4:114; A5:59; A6:75; A7:69; A8:97; A9:86
deuterium in void gas, B15:46
dissolved in pore fluids, A4:14; A10:60; A11:39
distributed low flux, B1:6–7
fluoride, B1:6–22
gas composition and carbon isotopes, B1:29
gas hydrates, A3:16–17; A5:8
hydrogen isotopes, B15:5
microbial generation, B15:1–52
modeled concentration vs. depth, B1:29
pore water, A6:10–11; A10:14; A11:12; B17:20
pressure cores, A1:67; A4:115; A6:76; A8:88–89; A9:87; A10:104–105
sediments, A3:19–20; A4:16–17, 110–111; A5:8–9, 57; A6:12–13, 73; A7:12–13, 67; A8:14–15, 67, 85; A9:12–13, 83; A10:16–17, 100–101; A11:13, 56
sources, A1:9–10
subduction zones, B1:4–5
transport-dominated regime, B1:7–8
velocity logs, B2:10–11
See also anaerobic methane oxidation; sulfate/methane interface
methane, dissolved residual, vs. depth, A6:45
methane/ethane ratio
core void gas, A4:112–113; A5:58; A8:86; A9:84–85; A10:102–103; A11:13, 57
decomposed gas hydrates, A4:114; A5:59; A8:97; A9:86
ethane fractionation, B15:17–19
ethane generation mechanism, B15:16–17
gas hydrate proxies, B1:12
gas hydrates, A4:42–43; A5:10; A7:14; A9:13–14
gas transport, B15:4–5
geothermal gradient, B15:38
pressure cores, A4:115; A6:76; A8:88–89; A9:87; A10:104–105
sediments, A3:19–20; A4:16–17, 110–111; A5:8–9, 57; A6:12–13, 73; A7:12; A8:14–15, 85; A9:13, 83; A10:17, 100–101; A11:156
seismic Horizon A, B1:31
void gas samples, B15:39–40
vs. carbon isotopes, B15:28
vs. depth, A1:66; A3:69; A4:71; A5:36; A6:47; A7:44–45; A8:54; A9:52; A10:62; A11:41; B15:26
vs. temperature, A3:70; A4:72; A6:48; A8:55
methane/seawater/hydrate stability zone, thermal anomalies, A7:16
methane bubbles, seafloor observations, A1:5
methane production rate assumptions, B1:29
parameters, B15:52
vs. depth, B15:37
methanogenesis, anaerobic environment, A3:22; A4:18
methanogenesis, microbial, alkalinity, B15:14–16
mica. See also muscovite
mica, detrital sediments, B11:17–19
vs. depth, B11:13–16
micrite, lithologic units, A10:8–9
microbial generation, methane, B15:1–52
microbial metabolites, reaction-dominated gas hydrates, B15:9–19
microbial processes, organic matter decomposition, A3:17
microbiology
core quality of intervals sampled, A3:122; A8:91; A9:91; A10:19, 109
Hydrate Ridge S, B1:16–18
intervals sampled, A3:121; A4:118; A8:90; A9:90; A10:108
sampling, A9:15
Site 1244, A3:21–24
Site 1245, A4:18–19
Site 1249, A8:15–17
Site 1250, A9:14–16
Site 1251, A10:18–19
microorganisms
gas hydrates, A1:10–11
iron, A3:22
mineral composition, authigenic carbonates, B5:7–8
mineralogy, bulk, sediments, B11:1–19
minor elements, pore water, A3:17–19; A4:14–15; A5:8; A6:11–12; A7:11–12; A8:13; A9:11–12; A10:15–16
monopole sonic waveforms, vs. depth, A4:93; A6:65; A9:71; A10:86; A11:50; B24:23–32, 35–37
mottling
lithologic units, A7:3–6; A8:7–8; A9:4; A10:5
photograph, A8:38
mousseline texture
lithologic units, A4:6; A5:4; A7:3–6; A8:6–8
photograph, A3:57; A4:48; A7:28–29; A8:41–42, 46, 62; A9:44; A11:33
sedimentary evidence of gas hydrates, A3:8–9
thermal anomalies, A7:48
vs. depth, A8:40
mud, clay mineralogy, B7:1–15
mudstone, clay mineralogy, B7:1–15
muscovite, lithologic units, A3:6–8; A4:9; A10:8

N

n-butane
core void gas, A6:74; A7:68; A8:53, 86; A9:51, 84–85; A11:57
core void gas vs. depth, A6:46
decomposed gas hydrates, A5:59; A6:75; A7:69; A8:97; A9:86
pressure cores, A6:76; A8:88–89; A9:87
vs. depth, A7:42–43
n-hexane
core void gas, A6:74; A7:68
core void gas vs. depth, A6:46
pressure cores, A9:87; A10:104–105
n-pentane
core void gas, A5:58; A6:74; A7:68; A8:51; A9:84–85
core void gas vs. depth, A6:46
decomposed gas hydrates, A9:86
pressure cores, A6:76; A9:87; A10:104–105
nannofossil bioevents, chart, A4:59; A7:34
nannofossils
environment, A10:10–11
lithologic units, A3:5–8; A4:5–11; A5:3–4; A6:3–8; A8:6–8; A9:6–7; A10:6–7; A11:3–5
nannofossils, calcareous, biostratigraphy, A3:11–13; A4:12; A5:6; A6:8–9; A7:8; A8:10; A9:9–10; A10:11–12; A11:10
neutron porosity from core logs, vs. depth, A4:90
neutron porosity logs
logging-while-drilling, A3:38–39, 90–93, 99; A6:64; A9:70, 74; A10:85
vs. depth, A4:90; A5:52; A6:62, 67; A7:59; A8:73; A9:68, 70, 74; A10:83, 88; A11:48, 51
neutron porosity wireline logs, vs. depth, A4:92; A6:64; A9:70; A10:85
New Jersey Slope, methane/ethane ratio, B15:38
nitrogen
core void gas, A4:112–113; A5:58; A6:74; A7:14, 68; A8:86; A9:84–85; A10:102–103; A11:57
decomposed gas hydrates, A4:114; A5:59; A6:75; A7:69; A8:97; A9:86
pressure cores, A4:115; A6:76; A8:88–89; A9:87; A10:104–105
See also carbon/nitrogen ratio
nitrogen, total
sediments, A3:21, 119; A4:17, 116; A5:10, 60; A6:14, 77; A7:70; A9:14, 88; A10:18, 106
vs. depth, A3:72; A4:73; A5:37; A6:49; A7:46; A9:53; A10:63
nodular texture, infrared imagery, A8:56
nodules, thermal anomalies, A7:47
nodules, carbonate
lithologic units, A4:5; A7:3–8; A10:8–9
photograph, A3:48; A4:43; A7:29; A10:49
photomicrograph, A7:30
thermal anomalies, A7:15
nodules, gas hydrates, computed tomographic analysis, B21:3, 9
nodules, gypsum, lithologic units, A3:8
nodules, pyrrhotite, lithologic units, A3:6; A10:7
nuclear magnetic resonance logs, gas hydrates, B27:1–22
nuclear magnetic resonance porosity
Hydrate Ridge, B27:7
vs. depth, A4:97; A5:52; A6:67; A7:59; A8:73; A9:74; A10:88
nuclear magnetic resonance tool, logging-while-drilling, A3:99

O
O layers, grain size and gas hydrates, B10:4
obliquity, sediments, B12:9
offlap, thrust folding, B2:19
offset planes, photograph, A8:45
onlap
tectonic, B2:9–10
thrust folding, B2:19
opal, biogenic
apparent overconsolidation, B8:9
lithologic units, A4:7; A7:5–6; A9:4–7
vs. depth, A3:45–47; A4:36–40, 42; A5:22; A6:29–30; A7:26; A8:37; A9:32–33, 38; A10:40–43; A11:23–24, 26
Oregon continental margin, summary, A1:1–75
organic debris, lithologic units, A3:4–8
organic matter
data, B12:71
decomposition, A3:17; A10:14–15
oxidation, B19:6
overburden, repressurized sediments, B26:6
overconsolidation, apparent, overburden pressure, B8:8–9
oxidation
organic matter, B19:6
See also anaerobic methane oxidation
oxygen
core void gas, A4:112–113; A5:58; A6:74; A7:68; A8:86; A9:84–85; A10:102–103; A11:57
decomposed gas hydrates, A4:114; A5:59; A6:75; A7:69; A8:97; A9:86
pressure cores, A4:115; A6:76; A8:88–89; A9:87; A10:104–105
oxyg en isotopes
depletion, B13:6–8
pore water, B13:3–4
vs. depth, B13:15, 17
P
“peachy orange slime,” fluorescence micrograph, A10:19, 64
Pearson correlation, gas hydrate correlation with sediment grain size, B10:4–6, 25–29
pebbles, lithologic units, A10:5
pentane
core void gas, A4:112–113
decomposed gas hydrates, A4:114
pressure cores, A4:115
vs. depth, A4:70
See also iso-pentane; n-pentane
perfluorocarbon tracers
bacteria, A3:23; A4:19; A8:16–17; A10:19
microbiology, A4:119
permeability, gas hydrates, A1:45–46
Peru Trench, fluoride, B16:5–6
phosphate
organic matter decomposition, A3:17; A10:14–15
vs. depth, A3:59; A4:61; A5:28; A6:39; A7:36; A8:48; A9:46; A10:52; A11:35; B16:20
photoelectric effect factor, logging-while-drilling, A1:90–93; A4:92; A6:64; A9:70; A10:85
photoelectric effect factor logs, vs. depth, A4:89; A5:51, 53; A6:61–62; A7:58; A8:72; A9:72; A10:82–83; A11:48, 51
photoelectric effect factor wireline logs, vs. depth, A3:93; A4:92; A6:64; A9:70; A10:85
physical properties
correlation, B8:7
correlation with seismic data, A4:78; A5:42
gas hydrate dissociation, A7:17–18; A8:19–20
near-surface sediments, B8:1–29
repressurized sediments, B26:1–19
seismic data, A8:60; A9:34, 58; A10:71; A11:45
seismic Horizon A, A9:18–19
seismic Horizon B, B1:33
seismic profiles, A10:44
Site 1244, A3:24–28
Site 1245, A4:19–22
Site 1246, A5:10–14
Site 1247, A6:14–17
Site 1248, A7:14–18
Site 1249, A8:17–20
Site 1250, A9:16–19
Site 1251, A10:19–25
Site 1252, A11:14–16
thermal anomalies, A6:53
tools, B26:12–14
plasticity index
sediments, B12:7–8
vs. liquid limit, B12:19
Pleistocene
biostratigraphy, A4:12; A6:8–9
lithologic units, A5:3–5
tectonics, B2:9–11
See also Pliocene/Pleistocene boundary
Pleistocene, lower
biostratigraphy, A4:12; A6:8–9
clay mineralogy, B7:1–15
deformation age constraints, B3:4–5
lithologic units, A3:7–8; A4:7–10; A8:6–7; A10:7–9; A11:6–7
Pleistocene, lower-middle, lithologic units, A3:5–7;
A4:5–7; A6:5–7; A7:4–6; A9:5–7; A10:5–7; A11:5
Pleistocene, middle
diatom biostratigraphy, B6:2–3
lithologic units, A4:5; A6:4–5; A7:3–4; A8:7–8; A9:4; A10:4–5; A11:2–5
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pleistocene, middle–upper, lithologic units</td>
</tr>
<tr>
<td>A3:4–5; A6:3–4; A9:5</td>
</tr>
<tr>
<td>Pleistocene, upper, lithologic units</td>
</tr>
<tr>
<td>A4:4</td>
</tr>
<tr>
<td>Pleistocene/Holocene boundary</td>
</tr>
<tr>
<td>Photograph, A11:27</td>
</tr>
<tr>
<td>Pliocene, biostratigraphy</td>
</tr>
<tr>
<td>A3:10–13</td>
</tr>
<tr>
<td>Pliocene, lower, nannofossils</td>
</tr>
<tr>
<td>A3:13</td>
</tr>
<tr>
<td>Pliocene, upper biostratigraphy</td>
</tr>
<tr>
<td>A10:11</td>
</tr>
<tr>
<td>clay mineralogy</td>
</tr>
<tr>
<td>B7:1–15</td>
</tr>
<tr>
<td>deformation age constraints</td>
</tr>
<tr>
<td>B3:4–5</td>
</tr>
<tr>
<td>lithologic units</td>
</tr>
<tr>
<td>A3:7–8; A10:7–9; A11:6–7</td>
</tr>
<tr>
<td>tectonics</td>
</tr>
<tr>
<td>B2:9–11</td>
</tr>
<tr>
<td>Pliocene/Pleistocene boundary biostratigraphy</td>
</tr>
<tr>
<td>A10:12; A11:11</td>
</tr>
<tr>
<td>nannofossils</td>
</tr>
<tr>
<td>A3:12–13</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
</tr>
<tr>
<td>Velocity logs, B22:7</td>
</tr>
<tr>
<td>pore pressure, excess, vs. vertical consolidation stress</td>
</tr>
<tr>
<td>B12:31–47</td>
</tr>
<tr>
<td>pore pressure, normalized, vs. axial strain</td>
</tr>
<tr>
<td>B12:49, 51, 53, 55, 57, 59, 61, 63, 65, 67</td>
</tr>
<tr>
<td>pore pressure change, vs. axial strain</td>
</tr>
<tr>
<td>B26:17</td>
</tr>
<tr>
<td>pore water</td>
</tr>
<tr>
<td>Acetate and hydrogen, B17:1–20</td>
</tr>
<tr>
<td>Carbon isotopes, B20:1–16</td>
</tr>
<tr>
<td>Compaction, B15:10–11</td>
</tr>
<tr>
<td>Fluoride, B16:1–22</td>
</tr>
<tr>
<td>halogens</td>
</tr>
<tr>
<td>B14:1–25</td>
</tr>
<tr>
<td>Hydrogen sulfide, B19:1–13</td>
</tr>
<tr>
<td>Isotopes, B13:1–20; B15:7</td>
</tr>
<tr>
<td>pore water saturation, vs. depth</td>
</tr>
<tr>
<td>A4:76; A5:39; A6:51, 53; A7:49, 60; A9:75; A10:89</td>
</tr>
<tr>
<td>porosity</td>
</tr>
<tr>
<td>Across seismic Horizon A, A4:79</td>
</tr>
<tr>
<td>Advanced piston corer, A4:86</td>
</tr>
<tr>
<td>Comparison of logging-while-drilling density and NMR-MRP, A4:97</td>
</tr>
<tr>
<td>correlation</td>
</tr>
<tr>
<td>B8:7</td>
</tr>
<tr>
<td>correlation with seismic data</td>
</tr>
<tr>
<td>A5:42</td>
</tr>
<tr>
<td>sediments</td>
</tr>
<tr>
<td>A3:26–27</td>
</tr>
<tr>
<td>vs. depth</td>
</tr>
<tr>
<td>A3:77; A4:77; A5:41; A6:52; A7:52; A8:59–60; A9:56; A10:70–71; A11:44–45; B8:17–21; B10:11–18; B15:32; B22:17; B27:15–16</td>
</tr>
<tr>
<td>vs. formation factor</td>
</tr>
<tr>
<td>B8:16</td>
</tr>
<tr>
<td>vs. shear strength</td>
</tr>
<tr>
<td>B8:22</td>
</tr>
<tr>
<td>vs. velocity</td>
</tr>
<tr>
<td>B8:22</td>
</tr>
<tr>
<td>well-logging</td>
</tr>
<tr>
<td>A4:31; A5:17–18; A6:23–24; A7:21–22; A8:31–32; A9:27–28; A10:35–36; A11:20</td>
</tr>
<tr>
<td>porosity, abnormally high, near-surface sediments</td>
</tr>
<tr>
<td>B8:9–10</td>
</tr>
<tr>
<td>porosity, downcore, vs. depth</td>
</tr>
<tr>
<td>B8:26</td>
</tr>
<tr>
<td>porosity, surface, decay constants</td>
</tr>
<tr>
<td>B8:29</td>
</tr>
<tr>
<td>porosity from core logs, vs. depth</td>
</tr>
<tr>
<td>A5:52; A6:62, 64, 67; A7:59; A8:73; A9:70, 74; A10:83, 85, 88; A11:48, 51</td>
</tr>
<tr>
<td>porosity logs</td>
</tr>
<tr>
<td>Logging-while-drilling, A4:92; B22:6–7</td>
</tr>
<tr>
<td>See also neutron porosity from core logs; neutron porosity logs; neutron porosity wireline logs; nuclear magnetic resonance porosity</td>
</tr>
<tr>
<td>potassium</td>
</tr>
<tr>
<td>pore water, A8:13</td>
</tr>
<tr>
<td>vs. depth</td>
</tr>
<tr>
<td>A3:60; A4:62; A5:29; A6:40; A7:37; A8:49; A9:47; A10:53</td>
</tr>
<tr>
<td>potassium logs</td>
</tr>
<tr>
<td>Logging-while-drilling, A3:92</td>
</tr>
<tr>
<td>vs. depth</td>
</tr>
<tr>
<td>A4:91; A6:63; A9:69; A10:84; A11:40</td>
</tr>
<tr>
<td>preconsolidation pressure, sediments</td>
</tr>
<tr>
<td>B12:8</td>
</tr>
<tr>
<td>pressure</td>
</tr>
<tr>
<td>Core pullout, B23:9</td>
</tr>
<tr>
<td>vs. temperature</td>
</tr>
<tr>
<td>B26:11</td>
</tr>
<tr>
<td>vs. time</td>
</tr>
<tr>
<td>B23:29–30</td>
</tr>
<tr>
<td>See also temperature-pressure-conductivity tool; volume-pressure-time plots</td>
</tr>
<tr>
<td>pressure, in situ</td>
</tr>
<tr>
<td>Estimation, A10:26</td>
</tr>
<tr>
<td>sediments</td>
</tr>
<tr>
<td>A3:30; A8:21</td>
</tr>
<tr>
<td>vs. time</td>
</tr>
<tr>
<td>A9:19, 63</td>
</tr>
<tr>
<td>pressure, overburden</td>
</tr>
<tr>
<td>Apparent overconsolidation, B8:8–9</td>
</tr>
<tr>
<td>vs. depth</td>
</tr>
<tr>
<td>B8:25</td>
</tr>
<tr>
<td>See also shear strength/overburden pressure ratio</td>
</tr>
<tr>
<td>pressure, seafloor, MATLAB m-file</td>
</tr>
<tr>
<td>B23:14</td>
</tr>
<tr>
<td>pressure-temperature conditions, identification</td>
</tr>
<tr>
<td>A3:83</td>
</tr>
<tr>
<td>pressure cores</td>
</tr>
<tr>
<td>Gas hydrate proxies, B1:10–11</td>
</tr>
<tr>
<td>Gas hydrates, A3:20, 30–32; A4:17, 23–24; A6:13–14, 18–19; A8:15, 21–23; A9:13–14, 19–21; A10:17</td>
</tr>
<tr>
<td>HYACINTH, A3:32–33, 131; A4:24–25, 130; A8:23, 97; A9:21–22, 99; A10:27–30, 118</td>
</tr>
<tr>
<td>Site 1245, A4:22–26</td>
</tr>
<tr>
<td>Site 1246, A5:14–15</td>
</tr>
<tr>
<td>Site 1249, A8:20–28</td>
</tr>
<tr>
<td>Site 1250, A9:19–22</td>
</tr>
<tr>
<td>Site 1251, A10:25–30</td>
</tr>
<tr>
<td>Site 1252, A11:16–17</td>
</tr>
<tr>
<td>pressurization, physical property tools</td>
</tr>
<tr>
<td>B26:12–14</td>
</tr>
<tr>
<td>propane</td>
</tr>
<tr>
<td>Core void gas, A4:112–113; A5:58; A6:74; A7:68; A8:53, 86; A9:12–13, 51, 84–85; A10:61, 102–103; A11:40, 57</td>
</tr>
<tr>
<td>Core void gas vs. depth, A3:113–114; A5:35; A6:46</td>
</tr>
<tr>
<td>Decomposed gas hydrates, A4:114; A5:59; A6:75; A7:69; A8:14, 97; A9:86</td>
</tr>
<tr>
<td>gas hydrates, A7:14</td>
</tr>
<tr>
<td>pore fluids</td>
</tr>
<tr>
<td>A3:112</td>
</tr>
<tr>
<td>pressure cores</td>
</tr>
<tr>
<td>A4:115; A6:76; A8:88–89; A9:87; A10:104–105</td>
</tr>
<tr>
<td>Sediments, A3:19–20; A4:16–17, 110–111; A5:8–9, 57; A6:12, 73; A7:13, 67; A8:85; A9:83; A10:16, 100–101; A11:56</td>
</tr>
<tr>
<td>vs. depth</td>
</tr>
<tr>
<td>A3:68; A4:68, 70; A5:33; A6:44, 46; A7:41–43; A8:52; A9:50–51; A10:61; A11:38, 40</td>
</tr>
<tr>
<td>propylene, sediments</td>
</tr>
<tr>
<td>A11:56</td>
</tr>
<tr>
<td>proxies. See gas hydrate proxies</td>
</tr>
<tr>
<td>pyrrhotite</td>
</tr>
<tr>
<td>Demagnetization, B18:5–6</td>
</tr>
<tr>
<td>Environment, A10:10–11</td>
</tr>
<tr>
<td>Lithologic units, A4:9</td>
</tr>
</tbody>
</table>
Quartz
- Lithologic units: A3:4–8; A4:5–11; A6:3–8; A7:5–6; A10:8–9; A11:5–7
- Photomicrograph: A7:30
- X-ray diffraction data: A6:34; A9:37; A10:50
- Quaternary biostratigraphy: A3:10–13; A4:11–13; A5:6–7; A7:8–9; A10:11–12; A11:10

Radiography logs, sediment consolidation: B12:18, 141–148
- Radiolarians, lithologic units: A3:4–8; A4:5–11; A11:4–7
- Rate of penetration vs. depth: A4:88; A5:50; A6:60; A10:81
- Recompression index, sediments: B12:7–8
- Reconstruction, cross sections: B2:28
- Red Sea, methane/ethane ratio: B15:38
- Redox, microbial metabolites: B15:9–10
- Reflectance, lithologic units: A4:7; A9:7
- Reflection coefficients, downcore impedance: B8:8, 27
- Reflector AC, vs. chloride: A3:61
- Remanent magnetization, anhysteretic, vs. isothermal remanent magnetization: B18:12
- Remanent magnetization, isothermal iron sulfides: B18:5–7 vs. anhysteretic remanent magnetization: B18:12
- Resistance, conversion of temperature data: B23:32
- Resistivity, gas hydrate dissociation, A7:54
- Gas hydrates: A1:64
- Logging-while-drilling: A3:61, 63, 90–93; A4:41, 92; A6:64; A9:70; A10:85
- Repressurized sediments: B26:6–7
- Volcanic ash, A3:96
- Vs. consolidation stress: B26:16
- Vs. density porosity logs: B22:20
- Vs. depth: A3:68; A4:81; A9:34; A10:44; B8:17–19, 21
- See also deep resistivity logs; medium resistivity logs; shallow resistivity logs; spherically focused resistivity logs
- Resistivity, logging-while-drilling thermal anomalies: A7:50
- Vs. depth: A6:31
- Resistivity, noncontact: A4:21; A5:12–13; A10:23 tool calibration: B8:14
- Gas hydrates: A8:75 imaging and gas hydrates: A4:94; A7:21, 61
- Photograph, A3:95–97

Sand
- Grain size and gas hydrates: B10:4
- Lithologic units: A3:6–8; A4:5–11; A5:3–4; A6:4–8; A7:4–6; A9:5–7; A10:4–9; A11:3–7
- Photograph, A3:50; A9:59
- Vs. depth: A3:45–47; A4:36–40; A5:22; A6:29–30; A7:26; A8:37; A9:32–33, 35; A10:40–43; A11:23–24, 26; B10:10–18; B11:13–15
- Sand, glauconite, A3:59; A11:31
- Sand, glauconite-rich, lithologic units: A11:6–7
- Sand, silty, lithologic units: A8:7–8
- Sand, volcanic glass-rich, photograph: A4:50
- Sediment disruption, photograph: A3:57; A8:41, 51
- Sedimentary structures, lithologic units: A4:5–10
- Sedimentation rates, linear, biostratigraphy: A3:13; A5:7; A6:9; A7:9; A8:10–11; A9:10; A10:12–13; A11:11
- Sediments, abyssal plain, seismic units: B2:6
sediments, high-density, photograph, A9:59
sediments, near-surface, physical properties, B8:1–29
sediments, repressurized, physical properties, B26:1–19
sediments, slope basin, seismic units, B2:6–7
sediments, volcanic glass-rich, photograph, A4:50; A5:25; A7:33; A9:41
seismic data
chloride, A11:36
correlation with physical properties, A4:78; A5:42
debris flows, A3:58
gas hydrate proxies, B1:13
logging-while-drilling, A3:61
physical properties, A8:60; A9:34, 58; A10:71; A11:45
reflectivity, A3:57
seismic Horizon A, A3:56–57
thermal anomalies, A6:53
seismic data, three-dimensional
accretionary complex, A1:55; B11:12
stratigraphy, B2:2–3
seismic data, two-dimensional, stratigraphy, B2:4, 21–23
seismic experiments, near-offset vertical, seismic profiles, B25:1–23
seismic Horizon A
amplitude, B1:30
clay mineralogy, B11:7
deposition, A4:10–11
environment, A6:7–8
Formation MicroScanner imagery, A4:95
Hydrate Ridge, B1:32
in situ bulk density, B1:31
lithium, A4:67; A6:12, 43; A9:12
lithologic units, A9:5–7
map, B2:24
photograph, A7:33; A9:41
physical properties, A4:79; A9:18–19
resistivity-at-the-bit, A1:68; A4:95
seismic data, A1:56–57
seismic profiles, A6:28
seismic reflection, A4:41
seismic surveys, A1:7–8
tectonics, B2:9–11
transport-dominated regime, B1:7–8
volcanic glass-rich sediments and ash sequences, A4:51
seismic Horizon A′
map, B2:24
tectonics, B2:9–11
seismic Horizon B
deposition, A5:5
gas hydrates, B1:9
Hydrate Ridge, B1:33
lithium, A5:31
lithologic units, A5:4
physical properties, B1:33
seismic surveys, A1:8
seismic units, B2:6
time map, B2:27
seismic Horizon B′
bulk density, B25:17
deposition, A5:5
photograph, A3:51
seismic surveys, A1:8
seismic units, B2:6
X-ray diffraction data, A3:53
seismic Horizon Y
angular unconformity, A6:7–8
lithologic units, A4:5; A7:4–6; A8:7–8; A9:5–7
magnetic susceptibility, A9:61
photograph, A9:39
seismic data, A3:10
seismic reflection, A4:41
seismic horizons, depth, A1:71
Seismic Profile OR89-Line 2, B1:28
seismic profiles
Hydrate Ridge S, B1:27–28; B7:10; B9:15; B10:10
physical properties, A10:44
Site 1244, B4:11
Site 1245, A4:41; B4:11
Site 1246, A5:23
Site 1247, A6:28, 31
Site 1248, A7:27
Site 1250, A9:34
Site 1251, A10:44–45
Site 1252, A11:25
tectonics, A1:52
seismic profiles, vertical
reflection vs. depth, B25:14, 18, 20
spectra, B25:13
surveys, B24:4
two-way traveltime vs. depth, B25:15, 19, 21
velocity functions, B25:16
seismic sequence stratigraphy, tectonic evolution, B2:1–29
seismic surveys, gas hydrates, A1:4–6
seismic surveys, high-resolution three-dimensional, gas hydrates, A1:7–9
seismic Unit S.II, seismic units, B2:8
seismic Unit S.IV, seismic units, B2:6
seismic Unit S.V, seismic units, B2:6
seismic Unit S.VII, seismic units, B2:6
seismic units
isopach maps, B2:26
stratigraphy, B2:4–7, 20
seismograms, synthetic
reflection coefficients, B24:4
shallow resistivity logs, vs. depth, A4:90; A6:62; A10:83; A11:48, 51
shape, gas hydrates, B21:1–11
shear strength
correlation, B8:7
repressurized sediments, B26:7
sediments, A3:28, 128; A4:22, 126–127; A5:66; A10:24, 115; B12:1–148
vs. density, B8:22
vs. depth, A3:77, 81; A4:77, 81; A5:14, 41; A10:70; B8:17–19
vs. porosity, B8:22
vs. velocity, B8:23
See also undrained modulus, normalized shear strength, triaxial
data, B26:19
sediments, B12:8–10
<table>
<thead>
<tr>
<th>Site 1247 (continued)</th>
<th>Site 1247 (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>operations, A6:2</td>
<td>rock magnetism, B18:19, 29</td>
</tr>
<tr>
<td>operations summary, A1:25</td>
<td>seismic Horizon A, B1:32</td>
</tr>
<tr>
<td>organic geochemistry, A6:12–14</td>
<td>site description, A9:1–100</td>
</tr>
<tr>
<td>Site 1248, A7:1–75</td>
<td>Site 1251, A10:1–119</td>
</tr>
<tr>
<td>biostratigraphy, A7:7–9</td>
<td>acetate and hydrogen, B17:15</td>
</tr>
<tr>
<td>carbon isotopes in dissolved inorganic carbon, B20:12</td>
<td>acoustic logs, B24:13–14, 35–36</td>
</tr>
<tr>
<td>downhole logging, A7:19–23</td>
<td>carbon isotopes in dissolved inorganic carbon, B20:15</td>
</tr>
<tr>
<td>interstitial water geochemistry, A7:9–12</td>
<td>diatom biostratigraphy, B6:2–3, 6–7</td>
</tr>
<tr>
<td>lithostratigraphy, A7:2–7</td>
<td>downhole logging, A10:30–37</td>
</tr>
<tr>
<td>rock magnetism, B18:17, 27</td>
<td>downhole measurements and pressure coring, A10:25–30</td>
</tr>
<tr>
<td>site description, A7:1–75</td>
<td>gas hydrate lateral variability, B1:34</td>
</tr>
<tr>
<td>site summary, A1:27–30</td>
<td>interstitial water geochemistry, A10:13–16</td>
</tr>
<tr>
<td>Site 1249, A8:1–98</td>
<td>lithostratigraphy, A10:3–11</td>
</tr>
<tr>
<td>acetate and hydrogen, B17:13</td>
<td>microbiology, A10:18–19</td>
</tr>
<tr>
<td>biostratigraphy, A8:9–11</td>
<td>operations, A10:2–3</td>
</tr>
<tr>
<td>coring summary, A8:76–80</td>
<td>organic geochemistry, A10:16–18</td>
</tr>
<tr>
<td>depth of penetration, A8:81</td>
<td>physical properties, A10:19–25</td>
</tr>
<tr>
<td>downhole logging, A8:29–33</td>
<td>principal scientific results, A1:37–40</td>
</tr>
<tr>
<td>downhole measurements and pressure coring, A8:20–28</td>
<td>rock magnetism, B18:20, 30–31</td>
</tr>
<tr>
<td>interstitial water geochemistry, A8:11–13</td>
<td>site description, A10:1–119</td>
</tr>
<tr>
<td>lithostratigraphy, A8:5–9</td>
<td>site summary, A1:36–40</td>
</tr>
<tr>
<td>microbiology, A8:15–17</td>
<td>Site 1252, A11:1–62</td>
</tr>
<tr>
<td>operations, A8:2–5</td>
<td>acetate and hydrogen, B17:16</td>
</tr>
<tr>
<td>organic geochemistry, A8:14–15</td>
<td>biostratigraphy, A11:9–11</td>
</tr>
<tr>
<td>physical properties, A8:17–20</td>
<td>carbon isotopes in dissolved inorganic carbon, B20:16</td>
</tr>
<tr>
<td>principal scientific results, A1:31–33</td>
<td>coring summary, A11:53</td>
</tr>
<tr>
<td>rock magnetism, B18:18, 28</td>
<td>diatom biostratigraphy, B6:3, 8–10</td>
</tr>
<tr>
<td>site description, A8:1–98</td>
<td>downhole logging, A11:17–20</td>
</tr>
<tr>
<td>site summary, A1:30–33</td>
<td>downhole measurements and pressure coring, A11:16–17</td>
</tr>
<tr>
<td>Site 1250, A9:1–100</td>
<td>interstitial water geochemistry, A11:11–12</td>
</tr>
<tr>
<td>acetate and hydrogen, B17:14</td>
<td>lithostratigraphy, A11:2–9</td>
</tr>
<tr>
<td>acoustic logs, B24:10–11, 28–29</td>
<td>operations, A11:2</td>
</tr>
<tr>
<td>biostratigraphy, A9:9–10</td>
<td>operations summary, A1:40</td>
</tr>
<tr>
<td>carbon isotopes in dissolved inorganic carbon, B20:14</td>
<td>organic geochemistry, A11:12–14</td>
</tr>
<tr>
<td>coring summary, A9:77–79</td>
<td>physical properties, A11:14–16; B8:7</td>
</tr>
<tr>
<td>downhole logging, A9:22–29</td>
<td>principal scientific results, A1:40–42</td>
</tr>
<tr>
<td>downhole measurements and pressure coring, A9:19–22</td>
<td>rock magnetism, B18:21, 32–33</td>
</tr>
<tr>
<td>interstitial water geochemistry, A9:10–12</td>
<td>site description, A11:1–62</td>
</tr>
<tr>
<td>lithostratigraphy, A9:3–8</td>
<td>site summary, A1:40–42</td>
</tr>
<tr>
<td>microbiology, A9:14–16</td>
<td>skewness, vs. depth, B11:13–15</td>
</tr>
<tr>
<td>near-offset vertical seismic profiles, B25:6–7</td>
<td>slope basin deposits, clay mineralogy, B7:5</td>
</tr>
<tr>
<td>operations, A9:2–3</td>
<td>slope stability, gas hydrates, A1:10</td>
</tr>
<tr>
<td>organic geochemistry, A9:12–14</td>
<td>smectite</td>
</tr>
<tr>
<td>physical properties, A9:16–19</td>
<td>dehydration, B13:7–8</td>
</tr>
<tr>
<td>principal scientific results, A1:34–36</td>
<td>sediments, B7:4–5; B11:4–8</td>
</tr>
<tr>
<td>vs. depth, B7:12–14; B11:13–16</td>
<td>vs. depth, B7:12–14</td>
</tr>
<tr>
<td>sodium</td>
<td>sodium</td>
</tr>
<tr>
<td>pore water, A8:13</td>
<td>pore water, A8:13</td>
</tr>
<tr>
<td>vs. depth, A3:60; A4:62; A5:29; A6:40; A7:37; A8:49; A9:47; A10:53</td>
<td>vs. depth, A3:60; A4:62; A5:29; A6:40; A7:37; A8:49; A9:47; A10:53</td>
</tr>
<tr>
<td>soft sediment deformation</td>
<td>soft sediment deformation</td>
</tr>
<tr>
<td>environment, A7:7</td>
<td>environment, A7:7</td>
</tr>
<tr>
<td>sonic logs. See acoustic logs</td>
<td>sonic logs. See acoustic logs</td>
</tr>
</tbody>
</table>
soupy texture
 lithologic units, A7:3–6; A8:6–8
 photograph, A7:28
 vs. depth, A8:40
spherically focused resistivity logs, vs. depth, A3:94; A4:93; A9:71; A10:86; A11:50
sponge spicules, lithologic units, A3:4–8; A4:5–11; A11:4
strain, vs. vertical consolidation stress, B12:48, 50, 52, 54, 56, 58, 60, 62, 64, 66
strain, axial
 vs. effective shear stress, B26:17
 vs. internal friction angle, B12:48, 50, 52, 54, 56, 58, 60, 62, 64, 66
 vs. normalized pore pressure, B12:48, 50, 52, 54, 56, 58, 60, 62, 64, 66
 vs. normalized shear stress, B12:48, 50, 52, 54, 56, 58, 60, 62, 64, 66
 vs. normalized undrained modulus, B12:48, 50, 52, 54, 56, 58, 60, 62, 64, 66
 vs. pore pressure change, B26:17
strain, vertical, vs. vertical consolidation stress, B12:31–48
stratigraphic controls, gas hydrates, A1:9
stress
 orientation, B4:1–14
 seismic Horizon A, B1:32
stress, consolidation
 vs. compressional wave velocity, B26:15
 vs. resistivity, B26:16
stress, effective, vs. depth, B1:32
stress, maximum horizontal, sediments, B4:13
stress, vertical consolidation
 vs. coefficient of consolidation, B12:31–47
 vs. excess pore pressure, B12:31–47
 vs. lateral stress ratio, B12:48, 50, 52, 54, 56, 58, 60, 62, 64, 66
 vs. strain, B12:48, 50, 52, 54, 56, 58, 60, 62, 64, 66
 vs. total work, B12:31–48, 50, 52, 54, 56, 58, 60, 62, 64, 66
 vs. vertical strain, B12:31–48
 vs. void ratio, B12:31–48, 50, 52, 54, 56, 58, 60, 62, 64, 66
stress ratio, lateral, vs. vertical consolidation stress, B12:48, 50, 52, 54, 56, 58, 60, 62, 64, 66
strontium
 pore water, A4:15; A6:11; A7:11; A8:13; A10:15
 pore water comparison of Sites 1244 and 1248, A7:40
 sediments, A3:18
 vs. depth, A3:60; A4:62, 66; A5:29; A6:40; A7:37, 40; A8:49; A9:47; A10:53
structural controls, gas hydrates, A1:9
structural style, landward vergent, dewatering, B3:1–8
structural style, seaward vergent, dewatering, B3:1–8
structural vergence, variation summary, B3:15
structural Zone I, age constraints, B3:4–5
structural Zone II, age constraints, B3:4–5
structural Zone III, age constraints, B3:4–5
structure
 gas hydrates, B1:14–15; B21:1–11
 seismic units, B2:7–8
Structure I hydrate, gas hydrates, B1:14–15; B15:8–9
structure II hydrate, gas hydrates, B15:9
structure map, Hydrate Ridge, B3:14
subduction zone décollement, Seismic Profile OR89-Line 2, B1:28
subduction zones, Cascadia subduction zone, B1:3–5
submarine slides, accretionary complexes, A11:7–9
sulfate
 carbon cycling, A9:11
 depletion, A7:11; A8:13
 dissolved in pore fluids, A3:111; A4:14; A11:39
 gas hydrates, A3:16–17; A5:8
 microbiology, A9:15
 pore water, A6:10–11; A10:14; A11:12
 pore water comparison of Sites 1244 and 1248, A7:39
 redox, B15:9–10
 sulfur isotopes, B19:1–13
 vs. alkalinity, B15:35
 vs. depth, A3:59, 66–67, 71; A4:61, 65, 69; A5:28, 34; A6:39, 42, 45; A7:36, 38–39; A8:48; A9:46; A10:52, 56–57, 60; A11:35, 37; B15:33; B16:14–18; B19:9–10
sulfate, dissolved residual, vs. depth, A6:45
sulfate/methane interface
 anaerobic methane oxidation, A6:10–11
 dissolved in pore fluids, A4:14
 gas hydrates, A1:6; A3:16–17; A5:8
 pore water, A6:10–11; A10:14; A11:12
 sulfur isotopes, B19:4
 vs. depth, A3:66, 69; A4:65; A6:42, 45; A10:56
sulfate depletion zone
 barium, A3:67
 pore water, A11:12
 sulfur isotopes, B19:6
sulfate reduction
 anaerobic methane oxidation, B15:11–14
 carbon isotopes, B20:3
 rate parameters, B15:51
 vs. depth, B15:34
sulfate reduction zone, gas hydrates, A3:16–17
sulfide mineralization, lithologic units, A4:4
sulfide precipitates
 lithologic units, A11:5–7
 photograph, A11:29
sulfides
 anomaly photograph, A9:60
 lithologic units, A3:6–8; A5:3–4; A6:3–8; A8:6–8; A10:5–9
 photograph, A6:54–55; A8:38, 43
 vs. depth, A10:58
 X-ray line scanner images, A10:72
sulfur, total
 sediments, A3:119; A4:17, 116; A5:10, 60; A6:14, 77; A7:14, 70; A9:14, 88; A10:18, 106
 vs. depth, A3:72; A4:73; A5:37; A6:49; A7:46; A9:53; A10:63
sulfur isotopes
 hydrogen sulfide and sulfate, B19:1–13
 vs. depth, B19:9–10
summit vents, seismic reflection, A1:8
tectonic evolution, seismic sequence stratigraphy, B2:1–29

tectonics, A3:51

temperature
anomalies, A3:63
conversion of raw data to resistance, B23:31
core pullout, B23:9
sediments, A3:29–30, 40, 129; A4:128; A5:67; A6:82; A7:75; A8:95; A9:96; A10:116; A11:16–17, 61
seismic Horizon B, B1:33
tool calibration, B9:25
vs. acetate, B17:17
vs. depth, A3:74–76; A4:22–23, 64, 74, 99; A5:14, 38, 43–44; A6:17–18, 50, 53, 69; A7:18, 49, 56; A8:20–21, 57; A9:19, 54, 64, 76; A10:65–66, 68–69, 90; A11:42, 47, 52; B1:34; B9:17, 19–23; B23:7
vs. magnetic intensity, B18:12
vs. methane/ethane ratio, A4:72; A6:48; A8:55
vs. pressure, B26:11
vs. time, A4:82–83; A5:47, 49; A7:55; A11:46; B9:16–18; B23:6–7, 20–28, 30
well-logging, A4:32–33; A6:48; A8:55
See also pressure-temperature conditions
temperature, borehole, tools, A3:101
temperature, catwalk core, tools, B23:2–3
temperature, in situ
estimation, A3:82–83; A6:56; A10:25–26; B9:4–6
vs. time, A6:56; A8:63–64; A9:62–63; A10:75–76
temperature, subsurface
sediments, B9:1–25
vs. depth, A3:84; A4:84; A5:48; A6:57; A8:65; A10:77
temperature, water, vs. depth, A1:53
temperature-pressure-conductivity tool, B23:1–41
thermal anomalies
gas hydrate anomalies, A5:40; A7:15–16; A10:65
gas hydrate stability zone, B13:16
methane/seawater/hydrate stability zone, A7:16
microbiology, A9:15
mousselite texture, A7:48
nodules, A7:47
physical properties, A6:53
sedimentary evidence of gas hydrates, A3:8–9
seismic data, A6:53
veins, A7:47
voids, A7:48
vs. depth, A1:70; A7:49; A10:67
vs. logging-while-drilling resistivity, A7:49
thermal conductivity
sediments, A3:27–28, 127; A4:22, 125; A5:13, 65; A6:17, 81; A7:17, 74; A8:19, 94; A9:18, 95; A10:24, 114; A11:16, 60; B9:21–23
stability boundaries, B9:18
uncertainty, B9:6

vs. depth, A3:77; A4:77; A5:41; A6:52; A7:52; A8:59, 65; A9:56; A10:70; A11:44; B9:19–20
thermal conductivity, normalized, vs. depth, A10:74
thermal regime, Hydrate Ridge, B1:15–16
thorium logs
logging-while-drilling, A3:92
vs. depth, A4:91; A6:63; A9:69; A10:84; A11:40
time map, seismic Horizon B, B2:27
top of oceanic crust, Seismic Profile OR89-Line 2, B1:28
tortuosity, physical properties, B8:4–5
traveltime, vertical seismic profiles, B25:23
trench slope deposits, clay mineralogy, B7:5
tube radiographs, sediment consolidation, B12:16–17, 125–140
tube worms, gas hydrates, A1:6
turbidite
clay mineralogy, B11:1–19
Formation MicroScanner imagery, A3:97; A4:96
lithologic units, A3:7–10; A4:4–11; A5:3–4; A6:4–8; A7:4–6; A8:7–8; A9:5–7; A10:4–9; A11:2–7
magnetic susceptibility, A9:61
photograph, A3:50, 59; A4:44, 47, 55, 57; A9:39; A10:46; A11:29
photomicrograph, A4:58
resistivity-at-the-bit, A4:96
turbidite, sandy, photograph, A6:37
turbidite, sandy silt, lithologic units, A11:6–7
turbidity currents
deposition, A6:7
environment, A9:8; A10:10–11
lithologic units, A4:8–11

unconformities
diatom biostratigraphy, B6:2–3
lithologic units, A7:4
seismic data, A3:58
seismic units, B2:6
See also disconformities; erosional surfaces
unconformities, angular
lithologic units, A10:5–6
seismic Horizon Y, A6:7–8
unconformities, regional
accretionary complexes, A11:7–9
lithologic units, A11:5–7
unconformities, seismic, lithologic units, A11:3
unconformity DF2, seismic profiles, A11:25
unconformity K, map, B2:25
underplating
seismic units, B2:8
subduction zones, B1:3–5
underthrusting, geology, B1:4–5
undrained modulus, normalized, vs. axial strain, B12:49, 51, 53, 55, 57, 59, 61, 63, 65, 67
uplifts
age constraints, B3:4–5
deposition, A5:5
gas hydrate stability zone, B2:12–13
tectonics, B2:10
uranium-free gamma ray logs, vs. depth, A4:91; A6:63; A9:69; A10:84; A11:49
uranium logs
logging-while-drilling, A3:92
vs. depth, A4:91; A6:63; A9:69; A10:84; A11:40

V
veins
infrared imagery, A8:56
thermal anomalies, A7:47
veins, gas hydrates
computed tomographic analysis, B21:3, 7
photograph, A8:43–46, 62
veins, pyrrhotite, photograph, A6:35
veins, sulfide, photograph, A6:55
velocity
vs. density, B8:22
vs. density porosity logs, B22:19
vs. depth, B8:17–19
vs. porosity, B8:22
vs. shear strength, B8:23
velocity, sonic, gas hydrates, B24:1–38
velocity logs
free gas, B22:1–25
gas hydrates, B22:1–25
vs. depth, A4:93; A6:65; A9:71; A11:48, 50
See also acoustic logs; compressional wave velocity logs; shear wave velocity logs
velocity ratio
velocity logs, B22:6–7
vs. density porosity logs, B22:18
vents
north-south variability, B3:1–15
subduction zones, B1:4–5
See also summit vents
void ratio
vs. hydraulic conductivity, B12:31–47
vs. vertical consolidation stress, B12:31–48, 50, 52, 54, 56, 58, 60, 62, 64, 66
voids
lithologic units, A3:4–8
thermal anomalies, A7:48
X-ray line scanner images, A10:72
volcanic ash
Formation MicroScanner imagery, A3:96
lithologic units, A3:9–10; A4:6–8; A7:4; A9:6–7
photograph, A3:51, 59; A4:50; A9:59
photomicrograph, A7:33
volcanic glass
lithologic units, A3:9–10; A4:6–8; A6:6–7; A7:4; A9:4–7
photograph, A3:59; A4:50; A9:36
photomicrograph, A4:52; A5:26
vs. depth, A4:51; A9:42
X-ray diffraction data, A4:53
volume-pressure-time plots, vs. run time, A4:85; A6:58; A8:66; A9:65; A10:78–79

W
water content
compaction, B15:10–11
core void gas, A4:112–113
repressurized sediments, B26:5–6, 18
sediments, A3:123–125; A4:20–21, 122–123; A5:63; A6:80; A7:73; A8:93; A9:94; A10:111–112; A11:59; B12:7–8
water saturation
comparison of logging-while-drilling, density, and resistivity, A4:98
logging-while-drilling, A3:100
water saturation logs, vs. depth, A5:53; A6:68; A8:74
waveforms, stacked, vertical sonic profiles, vs. depth, B24:19–22
well-logging
porosity, A4:31; A5:17–18; A6:23–24; A7:21–22; A8:31–32; A9:27–28; A10:35–36; A11:20
temperature, A4:32–33; A6:25; A9:28–29; A10:37; A11:20
well-logging Unit 1, physical properties, A3:37; A4:29;
A5:16; A6:22; A7:20; A8:31; A9:26; A10:34;
A11:19
well-logging Unit 2, physical properties, A3:37; A4:29–30; A5:16–17; A6:22; A7:20–21; A9:26; A10:34;
A11:19
well-logging Unit 3, physical properties, A3:37; A4:30;
A5:17; A6:22; A7:21; A9:26–27; A10:34
well-logging Unit 4, physical properties, A3:37; A6:23;
A7:21; A10:34
well-logging units
Formation MicroScanner imagery, A4:30–31
physical properties, A3:37; A4:29–30; A5:16–17;
A6:22–23; A7:20–22; A8:31; A9:26–27; A10:34;
A11:19
resistivity-at-the-bit, A4:30–31
wireline logging
comparison with logging-while-drilling, A3:36;
A4:29; A6:21–22; A9:25–26; A10:33–34
summary, A3:35–36, 132; A4:27–28, 131; A6:20–21,
84; A9:24–25, 100; A10:31–33, 119; A11:17–19, 62
wood fragments, lithologic units, A4:9

X
X-ray diffraction data
authigenic carbonates, B5:1–8
calcite, A7:31; A9:37
calcite-treated random powder sample, B12:24–26, 75–80
carbonate content, A6:34
carbonates, A10:50
clay-fraction random powder sample, B12:27–29, 81–83
clay mineralogy, B7:1–15
random powder sample, B12:21–23, 72–74
seismic Horizon B, A3:33
volcanic glass, A4:53
X-ray line scanner images
 cracks, A10:72
 sulfides, A10:72
 voids, A10:72

Y
 yellowness, vs. depth, A3:59

TAXONOMIC INDEX

A

Actinocyclus oculatus
 Site 1244, A3:10–11
 Site 1247, A6:8
 Site 1248, A7:8–9
 Site 1251, A10:11
 Site 1252, A11:9

Actinocyclus oculatus Zone
 Site 1244, A3:11
 Site 1247, A6:8
 Site 1251, A10:11
 Site 1252, A11:9

Actinoptychus senarius
 Site 1248, A7:8
 Site 1251, A10:11

Aulacoseira spp., Site 1251, A10:11

C

Calcidiscus macintyrei
 Site 1244, A3:12
 Site 1245, A4:12
 Site 1247, A6:9
 Site 1248, A7:8
 Site 1249, A8:10
 Site 1250, A9:10
 Site 1251, A10:12

carribeanica, Gephyrocapsa, Site 1244, A3:11

Chaetoceros spp., Sites 1251–1252, B6:1–3

Coccolithus pelagicus, Site 1244, A3:11–12

Cocconeis spp.
 Site 1248, A7:8
 Site 1251, A10:11

cuneiformis, Hemicdiscus
 Site 1244, A3:10
 Site 1248, A7:8
 Site 1251, A10:11
 Site 1252, A11:9

curvostris, Proboscia
 Site 1244, A3:10–11
 Site 1245, A4:12
 Site 1246, A5:6
 Site 1247, A6:8
 Site 1248, A7:8–9
 Site 1249, A8:10
 Site 1250, A9:9
 Site 1251, A10:11
 Site 1252, B6:3

D

dimorpha, Stephanopyxis
 Site 1245, A4:11

doliolus, Fragilaria

Emiliania huxleyi
 Site 1244, A3:11
 Site 1245, A4:12
 Site 1246, A5:6
 Site 1248, A7:8
 Site 1249, A8:10
 Site 1250, A9:9
 Site 1251, A10:12
 Site 1252, A11:10

Emiliania huxleyi Acme Zone
 Site 1251, A10:12
 Site 1252, A11:10

F

Fragilaria

doliolus, Fragilaria

G

Gephyrocapsa carribeanica, Site 1244, A3:11

Gephyrocapsa lumina
 Site 1244, A3:12
 Site 1245, A4:12
 Site 1247, A6:9
 Site 1248, A7:8–9
 Site 1249, A8:10
 Site 1250, A9:10
 Site 1251, A10:12
Site 1252, A11:10

Gephyrocapsa spp. (small)

- Site 1244, A3:11
- Site 1246, A5:6
- Site 1247, A6:9
- Site 1249, A8:10
- Site 1250, A9:9
- Site 1251, A10:12
- Site 1252, A11:10

Gephyrocapsa spp. (small) Acme Zone

- Site 1244, A3:12
- Site 1245, A4:12
- Site 1247, A6:9
- Site 1248, A7:8–9
- Site 1249, A8:10
- Site 1250, A9:10
- Site 1251, A10:12
- Site 1252, A11:10

H

Hemidiscus cuneiformis

- Site 1244, A3:10
- Site 1248, A7:8
- Site 1251, A10:11
- Site 1252, A11:9

Huxleyi, Emiliania

- Site 1244, A3:11
- Site 1245, A4:12
- Site 1246, A5:6
- Site 1248, A7:8
- Site 1249, A8:10
- Site 1250, A9:9
- Site 1251, A10:12
- Site 1252, A11:10

K

kamtschatica, Neodenticula, Site 1244, A3:11

koizumii, Neodenticula

- Site 1244, A3:11
- Site 1251, A10:11
- Site 1252, A11:9

L

lacunosa, Pseudoemiliania

- Site 1244, A3:11–12
- Site 1245, A4:12
- Site 1246, A5:6
- Site 1247, A6:9
- Site 1248, A7:8
- Site 1250, A9:9
- Site 1251, A10:12
- Site 1252, A11:10

lumina, Gephyrocapsa

- Site 1244, A3:12
- Site 1245, A4:12
- Site 1247, A6:9
- Site 1248, A7:8–9
- Site 1249, A8:10
- Site 1250, A9:10

Site 1251, A10:12
Site 1252, A11:10

M

macintyrei, Calcidiscus

- Site 1244, A3:12
- Site 1245, A4:12
- Site 1247, A6:9
- Site 1248, A7:8
- Site 1249, A8:10
- Site 1250, A9:10
- Site 1251, A10:12

minuta, Reticulofenestra, Site 1244, A3:12

minutula, Reticulofenestra, Site 1244, A3:12

N

Neodenticula kamtschatica, Site 1244, A3:11

Neodenticula koizumii

- Site 1244, A3:11
- Site 1251, A10:11
- Site 1252, A11:9

Neodenticula koizumii Zone

- Site 1251, A10:11
- Site 1252, A11:9

Neodenticula seminae

- Site 1244, A3:10–11
- Site 1245, A4:11–12
- Site 1246, A5:6
- Site 1247, A6:8
- Site 1248, A7:8
- Site 1249, A8:10
- Site 1250, A9:9
- Site 1251, A10:11; B6:2
- Site 1252, A11:9

Neodenticula seminae Zone

- Site 1244, A3:10
- Site 1245, A4:12
- Site 1246, A5:6
- Site 1247, A6:8
- Site 1250, A9:9
- Site 1251, A10:11; B6:2
- Site 1252, A11:9

Neodenticula spp., Site 1252, A11:9

nitzschioides, Thalassionema

- Site 1244, A3:10
- Site 1245, A4:12
- Site 1246, A5:6
- Site 1247, A6:8
- Site 1248, A7:8
- Site 1249, A8:10
- Site 1250, A9:9
- Site 1251, B6:2

O

oculatus, Actinocyclus

- Site 1244, A3:10–11
- Site 1247, A6:8
- Site 1248, A7:8–9
pelagicus, Coccolithus, Site 1244, A3:11–12

Proboscia curvostris
Site 1244, A3:10–11
Site 1245, A4:12
Site 1246, A5:6
Site 1247, A6:8
Site 1248, A7:8–9
Site 1249, A8:10
Site 1250, A9:9
Site 1251, A10:11
Site 1252, A11:9

Proboscia curvostris Zone
Site 1244, A3:10–11
Site 1248, A7:8
Site 1251, A10:11
Site 1252, A11:9

Productus, Reticulofenestra
Site 1244, A3:12
Site 1251, A10:12

Pseudoemiliania lacunosa
Site 1244, A3:11–12
Site 1245, A4:12
Site 1246, A5:6
Site 1247, A6:9
Site 1248, A7:8
Site 1250, A9:9
Site 1251, A10:12
Site 1252, A11:10

Productus, Reticulofenestra, Site 1244, A3:12

Reticulofenestra minuta, Site 1244, A3:12
Reticulofenestra minutula, Site 1244, A3:12
Reticulofenestra productus
Site 1244, A3:12
Site 1251, A10:12
Reticulofenestra pseudoumbilicus, Site 1244, A3:12

S

seminae, Neodenticula
Site 1244, A3:10–11
Site 1245, A4:11–12
Site 1246, A5:6
Site 1247, A6:8
Site 1248, A7:8
Site 1249, A8:10
Site 1250, A9:9
Site 1251, A10:11; B6:2

Thalassionema nitzschioides
Site 1244, A3:10
Site 1245, A4:12
Site 1246, A5:6
Site 1247, A6:8
Site 1248, A7:8
Site 1249, A8:10
Site 1250, A9:9
Site 1251, B6:2

Thalassiosira oestrupii
Site 1244, A3:10
Site 1245, A4:11
Site 1246, A5:6
Site 1247, A6:8
Site 1248, A7:8
Site 1249, A8:10
Site 1250, A9:9
Site 1251, B6:2

Thalassiosira pseudoumbilicus, Site 1244, A3:12

V

variabilis, Discoaster, Site 1244, A3:12

Z

zones (with letter prefixes)

NN15, Site 1244, A3:12–13
NN16, Site 1244, A3:12–13
NN19, A3:12; A6:9; A7:8; A8:10; A9:10; A10:12; A11:10
NN19b/NN20 boundary, A4:12; A7:8; A8:10; A11:10
NN20, A3:11; A4:12; A5:6; A6:9; A8:10; A10:12; A11:10
NN21, A3:11; A4:12; A5:6; A6:9; A9:9; A10:12; A11:10
NPD9, A10:11; A11:9
NPD10, A3:11; A6:8; A11:9
NPD11, A3:11; A7:8; A10:11; A11:9
NPD12, A3:10; A4:12; A5:6; A6:8; A7:8; A9:9; A10:11; A11:9; B6:2
NPD12/NPD11, Site 1244, A3:10