Index To Volume 205

This index covers both the Initial Reports and Scientific Results portions of Volume 205 of the Proceedings of the Ocean Drilling Program. References to page numbers in the Initial Reports are preceded by " A " followed by the chapter number with a colon (A1:) and to those in the Scientific Results (this volume) by "B" followed by the chapter number with a colon (B1:).

The index was prepared by Earth Systems, under subcontract to the Ocean Drilling Program. The index contains two hierarchies of entries: (1) a main entry, defined as a keyword or concept followed by a reference to the page on which that word or concept appears, and (2) a subentry, defined as an elaboration on the main entry followed by a page reference.

The index covers volume text, figures, and tables but not core-description forms ("barrel sheets"), core photographs, smear slide data, or thin section descriptions. Also excluded from the index are bibliographic references, names of individuals, and routine front matter.

The Subject Index follows a standard format. Geographical, geologic, and other terms are referenced only if they are subjects of discussion. A site chapter in the Initial Reports is considered the principal reference for that site and is indicated on the first line of the site's listing in the index. Such a reference to Site 1253, for example, is given as "Site 1253, A4:1-184."

The Taxonomic Index is an index relating to significant findings and/or substantive discussions, not of species names per se. This index covers three varieties of information: (1) individual genera and species that have been erected or emended formally, (2) biostratigraphic zones, and (3) fossils depicted in illustrations. A taxonomic entry consisting of both genus and species is listed alphabetically by genus and also by species. Biostratigraphic zones are listed alphabetically by genus; zones with letter prefixes are listed under "zones."

SUBJECT INDEX

1/strontium ratio, vs. strontium isotopes, B5:17

A

accretionary prisms, plate tectonics, A1:8-10 acoustic logging, dipole shear sonic tool, B13:15 acoustic waves, fracture density, B13:1-22
Actinobacteria, microbial divergence indexes, B8:9
advection
model parameters, B6:26
See also fluid advection
age, forearc wedges, B1:16
age vs. depth
middle Miocene, B4:16
sedimentation rates, B4:4-5
Site 1254, B14:21
age models, isotope stratigraphy, B4:4-5
alkali index, vs. aluminum oxide, A5:61
alkalinity
geochemical cycles, B6:9
pore water, A4:46; A6:16
vs. depth, B6:20, 23
alteration
gabbro, A4:32-33
gabbro sills, A4:27-28
igneous rocks, B1:12-13; B9:7
photograph, A4:80
photomicrograph, A1:57, 59; A4:90, 92, 108
tephra, A4:23
volcanic glass, A6:10
aluminum. See also titanium/aluminum ratio
aluminum/(aluminum + iron + manganese) ratio, vs. depth, B3:10
aluminum oxide
sediments, A4:23; A5:17
tephra, A4:25
vs. alkali index, A5:61
vs. depth, A4:82, 114; A5:58
See also calcium oxide/aluminum oxide ratio
Alvin submersible postcruise visit, CORK-II, A1:36-37; A2:11-13
ammonium
deformation, A5:33
geochemical cycles, B6:9; B7:12
pore water, A4:46; A5:31; A6:16; B1:28
vs. depth, A4:145; A5:85; B6:20; B7:28
vs. time, B1:54
anaerobic methane oxidation, geochemical cycles, B6:126
anoxic environment, diffusion, B6:10-11
anteiso branching pentadecanoic acid, gas chromatograms, B8:17
Archaea, sediments, B8:6-11
augite, gabbro sills, A4:27-28
authigenesis, sediments, A4:24; A6:10

B

bacteria
microbial divergence indexes, B8:9
sediments, A4:49-50; A6:20
barite
geochemical cycles, B6:26
sediments, B2:9-10; B3:4
barium
convergent margins, B2:1-22; B5:5-7
correlation of Sites 1040 and 1039, B2:18
décollement zone, A1:13; B2:7
pore water, A4:46-47; A5:31; A6:16; B1:18-19; B2:19
sediments, A4:24; A5:17; A6:10; B5:21
vs. cobalt, B3:13
vs. copper, B3:12
vs. depth, A1:52; A4:83, 114, 147; A5:60, 84; B1:51;
B2:15-17; B5:15-16; B6:23
vs. zinc, B3:11
basalt, cryptocrystalline
contact with gabbro, A4:29-35
photograph, A1:59; A4:97-98
photomicrograph, A4:99
basalt, trace elements, B9:9-10
basement, oceanic
crust, A2:11
fluid flow, B6:9-11
fracture density, B13:1-22
bathymetry, maps, A1:42-44; B1:39; B7:25; B8:15; B10:7; B14:15
bedding, sediments, A4:35-36
bedding dip
sediments, A5:21
stereographic projection, A5:65, 67
vs. depth, A4:120; A5:65, 67
bedding planes, orientation, A4:122
beryllium-10, vs. depth, A1:48
bioenergetic divergence index
vs. depth, B8:21
vs. microbial divergence index, B8:22
biomarkers, sediments, B1:24; B8:6-11, 23
biosphere, sediments, B8:6-11
biostratigraphy, sedimentary wedges, B1:14-16
bioturbation, photograph, A4:75, 81
bivalves, photomicrograph, A5:55
blocks
photograph, A6:32
redeposition, A6:9
sedimentation, A5:15
borehole diameter
vs. depth, B13:17-20
waveforms, B13:6
boreholes, installation, A4:69
boron
pore water, A4:47
vs. depth, A4:147; A5:84
breccia
lithology, A4:21
quinones, $\mathrm{B} 8: 18$
breccia, equidimensional, photograph, A5:68
brecciation
photograph, A5:54
plate tectonics, A1:10
sediments, A5:21-22
underthrusting, A6:11
vs. depth, A5:64
brittle shear, photograph, A1:69
bromide
pore fluids and sediments, B5:5-7
vs. depth, B5:10
See also fluoride/bromide ratio
bromide/chloride ratio
pore fluids and sediments, B5:6-7
vs. depth, B5:10
burrows, photograph, A6:34

C

calcarenite, plate tectonics, A1:10
calcite
alteration, A4:33
redeposition, A6:9
sediments, A4:22
tephra, A4:23
calcite cement, sparry, photomicrograph, A5:55
calcium
deformation, A5:33
geochemical cycles, B6:11
pore fluids and sediments, B5:6-7
pore water, A4:46-47; A5:30; A6:15
vs. depth, A1:50-51, 62; A4:70, 146; A5:45, 83; B1:4344; B6:20, 22
vs. fluoride, B5:11
See also magnesium/calcium ratio
calcium carbonate
sediments, A4:180; A5:35
vs. depth, A4:149; A5:88
vs. titanium/aluminum ratio, B3:8
calcium oxide
sediments, A5:17
vs. depth, A4:83, 114; A5:60
calcium oxide/aluminum oxide ratio
gabbro, A4:34-35
vs. magnesium number, A4:116
vs. nickel, A4:117
caliper logs, vs. depth, A4:160, 164-167
carbon
fluid mobility tracers, B7:11-12
microbial divergence indexes, B8:10
organic matter, A5:36
wedge sediments, $\mathrm{B} 7: 1-38$
carbon, inorganic
permeability, B11:13
sediments, A4:180; A5:35, 111; A6:19, 54
sediments and igneous rocks, A4:48-49
carbon, organic
sediments, A6:19; B1:21-23
sediments and igneous rocks, A4:48-49
vs. depth, B6:21
carbon, pyrolizable, sediments, A5:112
carbon, total
permeability, B11:13
sediments, A4:180; A5:111; A6:54
carbon, total organic
effects of storage and pretreatment, B7:21-23, 37
permeability, B11:13
sediments, A4:180; A5:35-36, 111-112; A6:19, 54; B7:5-14, 34-35
vs. carbon isotopes, $\mathrm{B} 7: 31$
vs. depth, A4:149; A5:88; B7:29
carbon, total organic/total nitrogen ratio diagenesis, B7:6-8
sediment sources, B7:8-11
sediments, A4:180; A5:36, 111; A6:19, 54
vs. depth, B7:29
carbon-nitrogen evidence
diagenesis, B7:7-8
sediment sources, B7:8-11
carbon isotopes
seafloor sediments, B7:6-7
sediments, B7:5-14, 34-35
subducting pelagic sections, B4:1-18
vs. depth, B1:50; B4:9-14; B7:29-30
vs. nitrogen isotopes, B7:32
vs. total organic carbon, B7:31
carbon reservoirs, seafloor sediments, B7:6-7
carbonate compensation depth, lithology, A6:9
carbonate content
sediments, A5:111; B7:6
sediments and igneous rocks, A4:48-49
vs. depth, B7:30
carbonates
fractional porosity, B10:14
lithology, A6:9
microbial activity, B8:8
middle Miocene, B1:14-15
permeability, B11:13
photograph, A6:32
sedimentation, A5:15
carbonates, biogenic, titanium/aluminum ratio, B3:4
Caribbean plate, convergent margins, A1:7-8
Carnegie Ridge, plate tectonics, A1:6-7
cavity fillings, photomicrograph, A1:61
cementation, sediments, A5:18
Central America
seismogenic zones, A1:5-6
subduction zones, A1:1-3
cesium
pore fluids and sediments, B5:5-7, 21
vs. depth, B5:12, 14-15
chalk, nannofossil
lithology, A4:21; A6:9
photograph, A4:75, 77, 81, 121; A6:33
photomicrograph, A4:78; A6:29
chemical composition, sediments, A4:172
chilled margins, photograph, A4:97-98
chloride
pore water, A4:46; A5:28-29; A6:14-15; B1:28
vs. depth, A4:144; A5:82
See also bromide/chloride ratio; sodium/chloride ratio
chlorite
alteration, A4:32
gabbro sills, A4:28
See also kaolinite/chlorite ratio
Chondrites
lithology, A4:21
photograph, A4:75
chromium
gabbro, A4:34
microbial activity, B8:7-8
vs. depth, A4:114
vs. zirconium, A4:118
Chron C5Bn.2n, sediments, A4:42
Chron C5Cn, sediments, A4:42
Chron C5Cn.1n, sediments, A4:42
chrons, gabbro, A4:43
chrons, normal, igneous units, A4:176
clasts, lithology, A4:21
clay mineralogy, sediments, A5:19
clay minerals, smear slides, A5:14
clays
alteration, A4:32-33
gabbro, A4:29
gabbro sills, A4:27-28
parallel laminations, A4:20
photograph, A1:59; A4:77, 87-88, 93-94, 97-98, 100104; A6:27
photomicrograph, A1:57; A4:78, 92, 110
vs. depth, A4:79; A5:53; A6:28
X-ray diffraction data, A5:102-103
clays, detrital, titanium/aluminum ratio, B3:4
claystone
photograph, A1:67; A4:80; A5:46, 50, 62; A6:30, 33
photomicrograph, A4:78; A6:29
redeposition, A6:9
claystone, calcite-rich, photograph, A4:76
claystone, redeposited diatom-rich, photomicrograph, A6:29
claystone, silty, photomicrograph, A5:51
clinopyroxene
gabbro sills, A4:27-28
photomicrograph, A1:58-59; A4:89-90, 99, 106, 109, 113
titanium oxide vs. vanadium, B9:25
cobalt
sediments, B3:4
vs. barium, B3:13
cobbles
photograph, A5:54; A6:32, 34
photomicrograph, A5:55
sedimentation, A5:15
Cocos-Nazca spreading center
igneous complex, B9:20
plate tectonics, A1:6-7
Cocos plate
off-axis plume-ridge interaction, B9:1-38
plate tectonics, A1:6-9; B1:12
coenzymes, microbial activity, B8:7-8
cofactors, microbial activity, B8:7-8
color contrast, photograph, A6:30

Volume 205 SUBJECT INDEX compaction • diagenesis
compaction
hydrology, B6:3
vs. depth, A1:52
compressional wave velocity
fractures, B13:7
lithology, A4:39
vs. depth, A4:134; B13:17
vs. porosity, A4:134
compressional wave velocity logs, vs. depth, A4:164
concretions, carbonate, photograph, A5:62
concretions, sediments, A5:18
conductivity-temperature-depth, recorder profile, A4:153
conglomerate, redeposited, photograph, A6:31
consolidation
axial displacement, B10:18-24
subducting sediments, B10:1-24
consolidation system, photograph, B10:8
contamination
gabbro, A4:183
seawater, A4:181-182
sediments, A4:50-53
tracers, A5:36
convergent margins
geochemistry, B2:1-22
hydrology, A1:11-13; B6:3
hydrothermal alteration, B3:1-16
microbiology, B8:1-26
oceanic crust, A1:7-8
subduction flux, B1:1-54
subduction zones, A1:1-3
copper
microbial activity, B8:8
sediments, B3:4
vs. barium, B3:12
core recovery, vs. depth, A4:71-73, 105; B1:47; B9:22
CORK-II
Alvin submersible postcruise visit, A1:36-37
installation, A1:25-26, 36, 63, 72-74; A2:1-36; A4:11, 69; A6:4, 25
installation schematic, A1:53
monitoring, A2:1-36
corrensite, gabbro sills, A4:28
Costa Rica margin
calcareous nannofossil biostratigraphy, B14:1-26
carbon and oxygen isotopes, B4:1-18
convergent margins, B2:1-22
CORK-II, A2:1-36
fracture density, B13:1-21
geology, A1:1-75
hydrothermal alteration, B3:1-16
igneous complex, B9:1-38
nitrogen flux, B7:12-13
operations, B1:8-9
permeability and consolidation, B10:1-24; B11:1-13
pore fluid geochemistry, B5:1-21
subduction flux, B1:1-54
subseafloor sediment habitability, B8:1-26
temperature, B12:1-20
Costa Rica subduction zone, hydrology, B6:1-26
cristobalite/quartz ratio, X-ray diffraction data, A5:18-19
crystal accumulation
igneous rocks, B9:7, 11-12
rare earths, B9:32
cultivation, bacteria, A4:52

D

Davis-Villinger probe, pressure-temperature conditions, A4:55-57; A5:37-39; B1:25
debris flows
redeposition, A6:9
sedimentation, A5:15
décollement zone
barium, B2:7
carbon-nitrogen cycles, B7:12-14
CORK-II, A2:11-12
deformation, A5:20-22
geochemistry, A6:17
lithology and structure, A6:35
photograph, A5:47; A6:36
plate tectonics, A1:8-10; B1:29
quinones, $\mathrm{B} 8: 20$
reaction fronts, B6:8-9, 13-14
scaly fabric, A6:11
structure and lithology, A5:64
temperature, B12:19
deep resistivity logs, vs. depth, A4:163
deformation
alteration, A1:11-13
carbon-nitrogen evidence, B7:8-11
photograph, A1:68; A5:47-48
deformation, brittle
igneous units, A4:36
sediments, A5:18
deformation bands
sediments, A5:20
vs. depth, A5:64
deformation fronts, plate tectonics, A1:8-10
Dehalococcoides, microbial divergence indexes, B8:9
demagnetization
discrete samples, A4:44; A5:27
magnetic domains, A4:140-141
sediments, A5:25-26; A6:13
demagnetization, alternating-field
gabbro, A4:42
sediments, A4:41-42
density
lithology, A4:37-38
sediments, A5:23-24; A6:12
density, bulk, vs. depth, A4:130-131; A5:70-71, 73;
A6:37; B9:22
density, grain, vs. depth, A4:132; A5:72; A6:38
density correction logs, vs. depth, A4:162
density logs
lithology, A4:61
vs. depth, A1:55-56; A4:71-73, 162-167; B13:13
deoxyribonucleic acid, extraction, A4:52-53; B1:24; B8:6-11
dewatering, décollement zone, A1:13
diagenesis
carbon-nitrogen evidence, B7:7-8
fluid flow, A1:11-13
forearc wedges, A6:10
hydrology, B6:6-7
lithology, A4:21
organic matter, B2:6-7
seafloor sediments, B7:6-7
sediments, A5:18
total organic carbon/total nitrogen ratio, B7:6-8
See also authigenesis; cementation
diatom datums, middle Miocene, B1:15
diatomite, clayey, quinones, B8:19
diatoms
photograph, A4:75, 81
photomicrograph, A5:51; A6:29
sediments, A6:8
smear slides, A5:14-15
vs. depth, A4:79; A5:53; A6:28
differentiation, gabbro, A4:31-32
diffusion, fluid flow, B6:10-11
dipole shear sonic tool, acoustic logging, B13:15
Discoasters
lithology, A6:9
photomicrograph, A6:29
discrete samples
demagnetization, A4:44
paleolatitude, A4:44-45
Zijderveld diagrams, A4:142
DNA. See deoxyribonucleic acid
downhole logging, A1:22-23; A4:7-9, 59-64; B13:13
downhole measurements
Site 1253, A1:22; A4:7, 53-57
Site 1255, A1:32-33; A5:7-8, 37-39

E

enzymes, microbial activity, B8:7-8
ethane
sediments, A5:35
vs. depth, A5:86-87; A6:43
eubacteria, microbial divergence indexes, B8:9

F

fabric, scaly
décollement zone, A6:11
sediments, A5:21
Farallon plate
convergent margins, A1:7-8
hotspots, B9:12-13
fatty acid methyl esters, sediments, B8:6-11
fault gouge
photograph, A1:69; A5:48
vs. depth, A5:64
fault zones
barium, B2:9-10
sediments, A5:21
vs. depth, A1:51
faults
alteration, A1:11-13
vs. depth, A5:64
faults, normal
photograph, A4:123
sediments, A4:35-36
faults, reverse
orientation of conjugate sets, A4:124, 128
photograph, A4:123
stereographic projection, A5:66
fecal pellets, sedimentation, A5:15
feldspar, lithology, A6:8-9
fissility dip, sediments, A5:21
fissures, photomicrograph, A4:110
fluid advection
convergent margins, B1:20
See also advection
fluid flow
carbon-nitrogen tracers, B7:11-12
convergent margins, A1:11-13
diffusion, B6:10-11
geochemistry, A6:17
hydraulic properties, B1:24-25
hydrology, B6:1-26
incoming plate, A1:23-24; A4:9; B1:26-28
prism wedges, B6:7-8, 11-13
subduction flux, B1:1-54
fluid flow, upward, geochemical cycles, B6:10
fluid flux
CORK-II, A2:1-36
subduction zones, A1:1-3
fluoride
pore fluids and sediments, B5:5-7
vs. calcium, B5:11
fluoride/bromide ratio, vs. depth, B5:9
foliation
stereographic projection, A5:66
vs. depth, A5:64
foraminifer datums, middle Miocene, B1:15
foraminifers
photograph, A4:77
photomicrograph, A4:78
forearc prisms
photograph, A5:46
underthrusting, B1:5-7, 29
forearc wedges
age, B1:16
carbon and nitrogen geochemistry, B7:1-38
diagenesis, A6:10; B1:5
forearcs, plate tectonics, A1:8-10; B1:5-7
Formation MicroScanner imagery
igneous units, A1:60
lithology, A4:63-64
vs. depth, A4:73, 160, 164-167; B1:48
fractional crystallization, igneous rocks, B9:7, 11-12
fractures
density, B13:1-21
gabbro sills, A4:27-28
igneous units, A1:60; A4:36; B1:13
photograph, A4:102-103
vs. depth, A4:73, 87-88, 93-98, 100-104; A5:64; B1:48; B13:20

G

gabbro
contamination, A4:183
emplacement, B1:10-12; B9:12-13
magnetic inclination, A4:143
paleomagnetism, A4:42-43
petrography, A4:31-32
petrology, A4:28-35
structures, A4:36
gabbro, fine-grained
lithologic units, A4:26-28
photomicrograph, A4:106
gabbro, holocrystalline
photograph, A1:57; A4:86
photomicrograph, A1:57
gabbro, medium-grained
petrology, A4:28-35
photomicrograph, A4:106
gabbro, microcrystalline
lithologic units, A4:26-28
petrology, A4:28-35
photograph, A4:88, 91, 94, 96, 98, 101, 103
photomicrograph, A1:57-58; A4:89-90, 92, 106-110, 113
gabbro, plagioclase-pyroxene, lithologic units, A4:26-28
gabbro intrusions, magnetic inclination, A4:143
gabbro sills
geochemical data, A4:174-175
lithologic units, A4:26-28
Galapagos hotspot, tephra, A4:26
Galapagos Islands, trace elements, B9:9-10
gamma-ray logs
lithology, A4:60-61
vs. depth, A4:161
gamma rays
lithology, A4:40
sediments, A5:24; A6:12
vs. depth, A6:39
gamma rays, corrected natural, vs. depth, A4:135; A5:74
gases, headspace, composition, A4:179; A5:110; A6:52
gases, Vacutainer, composition, A5:109; A6:53
gastropods, photomicrograph, A5:55
genes, methanogen-specific
sediments, B8:6-11
vs. depth, B8:18-19
geochemical data, gabbro sills, A4:174-175
geochemistry
incoming plate, B1:26-28
rock standards JB-2 and JB-1A, B3:16
sediments, B1:16-17
subduction recycling, B1:23-24
geochemistry, inorganic
Site 1253, A1:20-21; A4:6, 45-48
Site 1254, A1:30-32; A5:5-7, 27-33
Site 1255, A1:35; A6:3, 14-17
geochemistry, organic
Site 1253, A1:21; A4:6, 48-49
Site 1254, A1:32; A5:7, 33-37
Site 1255, A1:34-35; A6:2-3, 18-19
geothermal gradient, potassium, A5:32-33
glass shards
photomicrograph, A4:85; A5:51
tephra, A4:20
glauconite, lithology, A6:8-9
grain size
gabbro, A4:29
permeability, B11:13
photograph, A4:87-88
tephra, A5:15-16
vs. depth, A4:87-88, 93-98, 100-104
growth zoning, plagioclase, photomicrograph, A4:107
Guatemala, subduction factory, A1:5-6

H

habitability, subseafloor sediments, B8:1-26
hafnium, igneous rocks, B9:9-11
hafnium/tantalum ratio
vs. lanthanum/samarium ratio, B1:11-12; B9:30-31
vs. magnesium number, B9:26-27
heat flow
deformation fronts, A1:49; B1:4
plate tectonics, A1:10-11
heat flux, long-term measurements, B12:4-6, 9
hemipelagic environment, photograph, A5:47-48
heptadecanoic acid, gas chromatograms, B8:17
hexadecanoic acid, gas chromatograms, B8:17
hotspots, sill emplacement, B9:12-13
hydraulic properties, B1:24-25
hydrocarbons, kerogen-derived, sediments, A5:112
hydrocarbons, thermogenic, microbial divergence indexes, B8:10
hydrocarbons, volatile, sediments, A4:48; A5:34-35, 112; A6:18-19
hydrogen index, sediments, A5:112; A6:19
hydrology
convergent margins, A1:11-13; B1:7-8
CORK-II, A2:1-36
transport-reaction model, B6:1-26
hydrothermal alteration
geochemistry, B1:16-17; B3:1-16
See also authigenesis; cementation
hydrothermal circulation, water budget, B6:11

I

igneous complex, source and petrogenesis, B1:10-14; B9:1-38
igneous petrology, A1:18-19; A4:3-4, 27-35
igneous rocks
rock magnetism, A4:43-44
stratigraphy, A1:24-25; A4:9-10; B9:7
trace elements, B9:9-10
X-ray diffraction data, A4:173
illite
sediments, A4:22; A5:19
vs. depth, A5:63
See also smectite-illite clays
ilmenite
gabbro sills, A4:27-28
photomicrograph, A1:57; A4:89, 92

Volume 205 Subject Index

 inclusions • magnesium oxideinclusions
gabbro, A4:31-32
photomicrograph, A4:90, 108
incoming plate, monitoring, B1:26-29
instruments, CORK-II, A2:7-11
intrusions, remanent magnetization, A4:42-43
iron
microbial activity, B8:6-11
pore water, A4:47; A5:31; A6:16
sediments, B3:4
vs. depth, A4:145; A5:85
See also aluminum/(aluminum + iron + manganese) ratio
iron-manganese oxides, sediments, B3:4
iron oxide
alkalis-iron-magnesium diagram, B9:24
gabbro, A4:34
microbial activity, B8:7-8
sediments, A4:24
tephra, A4:25
vs. depth, A4:114
vs. titanium/aluminum ratio, B3:9
iron oxide/magnesium oxide ratio, tephra, A4:25
Isla Floreana, trace elements, B9:9-10
isochrons
igneous complex, B1:41; B9:20
magnetic anomalies, A1:45; B7:24
isotope stratigraphy, age models, B4:4-5

J

joints
contour plots, A4:126
igneous units, A4:36
pyroxene gabbro, A4:125

K

kaolinite, sediments, A5:19
kaolinite/chlorite ratio, vs. depth, A5:63

L

laminations, parallel, photograph, A5:52
laminations, photograph, A4:76-77, 121
lanthanum, basalt, B9:9-10
lanthanum/samarium ratio
vs. hafnium/tantalum ratio, B1:11-12; B9:30-31
vs. magnesium number, B9:26-27
laumontite, alteration, A4:33
lightness, vs. depth, A4:74; A5:49
limestone
photograph, A5:54
photomicrograph, A5:55
limestone, lithified, photograph, A6:32
limestone, peloidal, sedimentation, A5:15
lipids, Archaeal, sediments, B8:6-11
lithification, photograph, A5:54
lithium
deformation, A5:33
geochemical cycles, B6:11
pore water, A4:47; A5:31-32; A6:17
vs. depth, A1:51, 62; A4:70, 147; A5:45, 84; B1:44; B6:22
lithium isotopes
hydrothermal alteration, B1:17-18; B5:5-7
pore fluids, B5:20
vs. depth, B5:18
lithologic units
Unit U4A, A4:26-28
Unit U4B, A4:28-33
Unit U4B-1, A4:29
Unit U4B-2, A4:29
Unit U4B-3, A4:29
Unit U4B-4, A4:29-30
Unit U4B-5, A4:30
Unit U4B-6, A4:30
Unit U4B-7, A4:30-31
vs. depth, A4:79
X-ray diffraction data, A6:11
lithology
décollement zone, A6:35
summary, A1:46; B1:40; B7:27
vs. depth, A4:74; A5:45, 49
lithostratigraphy
Site 1253, A1:17-18; A4:3, 19-26
Site 1254, A1:27-28; A5:2-3, 13-19
Site 1255, A1:34; A6:2, 7-11
loss on ignition, igneous rocks, B9:7
Lowrie-Fuller tests, hemipelagic sediments and igneous rocks, A4:43-44
Lowrie's tests
hemipelagic sediments, A4:43
saturation remanent magnetization, A4:139

M

magmatic contacts
contour plots, A4:126
gabbro, A4:29-35
gabbro sills, A4:27-28
igneous units, A4:36
photograph, A4:87-88, 95-98, 100-101
photomicrograph, A4:109
pyroxene gabbro, A4:125
vs. depth, A4:87-88, 93-98, 100-104
magmatism, plate tectonics, B1:12
magnesium
pore water, A4:46-47; A5:30; A6:15
sediments, A4:24
vs. depth, A4:146; A5:83
magnesium/calcium ratio
pore water, A4:46-47
vs. depth, A4:146; A5:83
magnesium number
crystal accumulation, B9:12
gabbro, A4:34-35
vs. calcium oxide/aluminum oxide ratio, A4:116
vs. minor elements, B9:26-27
vs. trace elements, B9:26-27
magnesium oxide
alkalis-iron-magnesium diagram, B9:24
gabbro, A4:34
sediments, A5:17
vs. depth, A4:83, 114; A5:60
See also iron oxide/magnesium oxide ratio
magnetic declination
sediments, A5:25-26; A6:13
vs. depth, A5:77-78; A6:41
magnetic domains
demagnetization, A4:140-141
magnetization ratio, A4:140-141
magnetic field, downhole measurements, A4:64
magnetic inclination
gabbro, A4:43, 143
sediments, A4:42, 143; A5:25-26; A6:13
vs. depth, A4:137; A5:76-78; A6:41
magnetic intensity
gabbro, A4:43
isothermal remanent magnetization, A4:139
saturation remanent magnetization, A4:139
sediments, A5:26; A6:13
vs. depth, A4:137-139, 168; A5:77-80; A6:42
magnetic intensity, demagnetization/natural remanent ratio, vs. depth, A4:138; A5:79
magnetic polarity
gabbro, A4:43
sediments, A4:41-42; A6:14
vs. depth, A4:71-72, 88, 94, 96, 98, 101, 103-104
magnetic susceptibility
lithology, A4:40
sediments, A5:24, 26-27; A6:12-13
vs. depth, A4:136; A5:75, 80; A6:40, 42
magnetite
gabbro, A4:42
gabbro sills, A4:27-28
photomicrograph, A1:57; A4:89
magnetization ratio, magnetic domains, A4:140-141
major elements
gabbro, A4:33-35
igneous rocks, B9:7-8, 35-38
sediments, A4:23-24; A6:10; B3:14-15
sediments and tephra, A5:94, 16-18
tephra, A4:25
vs. depth, A4:114
manganese
microbial activity, B8:6-11
microbial divergence indexes, B8:10
pore water, A4:47; A5:31; A6:16
vs. depth, A4:145; A5:85
See also aluminum/(aluminum + iron + manganese) ratio; iron-manganese oxides
manganese oxide
microbial activity, B8:7-8
sediments, A4:24
mantle, upper, hotspots, B9:12-13
mass accumulation rates, middle Miocene, B1:14-15
mass flows, parallel laminations, A4:20
medium resistivity logs, vs. depth, A4:163
melting, overprinting, B9:12-13
melts, gabbro, A4:31-32
menaquinones. See ubiquinones/menaquinones ratio
mesolite
alteration, A4:33
photomicrograph, A1:58; A4:113
X-ray diffraction data, A4:111
metalliferous sediment index, vs. depth, B3:10
metamorphic petrology, A1:18-19; A4:3-4, 27-35
methane
deformation, A5:33
geochemical cycles, B6:1-26
sediments, A5:34-35; A6:18-19
vs. depth, A4:148; A5:86-87; A6:43; B6:23
See also anaerobic methane oxidation
methane/propane ratio, sediments, A5:35
mica, lithology, A6:8-9
microbial activity, sediments, B8:6-11
microbial communities, chemosynthetic, organic carbon, B8:10
microbial divergence index
quinones, B8:9-10
vs. bioenergetic divergence index, B8:22
vs. depth, B8:21
microbiology
Site 1253, A1:21; A4:6-7, 49-53
Site 1254, A1:32; A5:7, 36
Site 1255, A1:35; A6:3, 19-20
microfaults, vs. depth, A4:120
microspheres, microbiology, A5:113
Middle America Subduction Zone, plate tectonics, A1:6-10
Middle America Trench
bathymetric map, A1:43
geochemistry, B5:1-21
plate tectonics, A1:10
miniaturized temperature loggers
calibration, B12:11
construction, B12:10
installation, B12:1-20
minor elements, vs. magnesium number, B9:26-27
Miocene
geologic timescale, B14:19
quinones, B8:18
Miocene, middle
age vs. depth, B4:16
biostratigraphy, B1:14-15
isotope stratigraphy, B4:4-5
tephra, A4:26
Miocene, upper, nannofossil biostratigraphy, B14:1-26
MK4, microbial divergence indexes, B8:9
MK5, microbial divergence indexes, B8:9
multidomain grains, gabbro, A4:42

N

nannofossil datums, middle Miocene, B1:15
nannofossils
lithology, A6:9
smear slides, A5:14-15
vs. age, B14:20
vs. depth, A4:79; A5:53; A6:28
nannofossils, calcareous, biostratigraphy, B14:1-26
Nazca plate. See Cocos-Nazca spreading center
neodymium isotopes
igneous rocks, B1:11; B9:8-9
metalliferous sediments, B1:17-18
vs. strontium isotopes, B9:29
neutron porosity logs, vs. depth, A1:55-56; A4:71-73, 162
Nicaragua, subduction factory, A1:5-6
nickel
gabbro, A4:34-35
sediments, A6:10
vs. calcium oxide/aluminum oxide ratio, A4:117
Nicoya, subduction factory, A1:5-6
nitrogen
fluid mobility tracers, B7:11-12
organic matter, A5:36
subduction recycling, B1:23-24
wedge sediments, B7:1-38
See also carbon-nitrogen evidence
nitrogen, total
effects of storage and pretreatment, B7:21-23, 38
sediments, A4:180; A5:111; A6:54; B7:5-14, 34-35
vs. depth, B7:28
vs. nitrogen isotopes, B7:31
nitrogen flux, subduction, B7:12-13
nitrogen isotopes
effects of storage and pretreatment, B7:22-23, 36, 38
seafloor sediments, B7:6-7
sediments, B7:5-14, 34-35
vs. carbon isotopes, B7:32
vs. depth, B7:28
vs. total nitrogen, B7:31
nitrogen reservoirs, seafloor sediments, B7:6-7

0

oceanic plates, hydrology, B6:3
octadecanoic acid, gas chromatograms, B8:17
olivine
alteration, A4:32-33
photomicrograph, A1:57; A4:92, 110
titanium oxide vs. vanadium, B9:25
ooze, calcareous, quinones, B8:18
ooze, diatomaceous, quinones, B8:18
opal, diagenesis, A5:18-19
organic matter
composition, A5:36
diagenesis, $\mathrm{B} 2: 6-7$
sediments, A6:19
orthopyroxene, gabbro sills, A4:27-28
OsmoFlowmeter, CORK-II, A2:5-6, 21-22
OsmoSamplers
CORK-II, A2:3-5, 15-20, 22; B1:14
miniaturized temperature loggers, B12:12
overthrust forearc wedge sequences, redeposition, A6:9
overthrust section, temperature, B12:19
oxidation
geochemical cycles, B6:1-26
See also anaerobic methane oxidation
oxygen isotopes
subducting pelagic sections, B4:1-18
vs. depth, B4:9-13, 15; B7:30

P
Pacific Ocean E central, bathymetric map, A1:42
palagonite
gabbro, A4:31-32
gabbro sills, A4:27-28
redeposition, A6:9
stratigraphy, A5:15-16
palagonitization
igneous rocks, B1:12-13
tephra, A4:20, 25
paleolatitude, discrete samples, A4:44-45
paleomagnetism
gabbro, A4:42-43
sediments, A4:41-42
Site 1253, A1:20; A4:5-6, 41-45
Site 1254, A1:30; A5:5, 25-27
Site 1255, A1:35; A6:3, 13-14
particulate tracers, contamination, A4:51-52
pelagic component, isotope stratigraphy, B4:4-5
pelagic facies, lithology, A4:20
peloids, sedimentation, A5:15
pelsparite, photomicrograph, A5:55
pentadecanoic acid, gas chromatograms, B8:17
perfluorocarbon tracers, contamination, A4:50-51
permeability
flow-through data, B1:29; B10:10, 16-17
geochemical cycles, B6:1-26
Stoneley waves, B13:6-9
subducting sediments, B10:1-24; B11:1-13
test results, B11:11-12
vs. fractional porosity, B10:11-12; B11:10
petrogenesis, igneous rocks, B9:10-11
petrography, gabbro, A4:31-32
phenocrysts
gabbro, A4:31-32
gabbro sills, A4:27-28
phillipsite
alteration, A4:33
X-ray diffraction data, A4:112
phosphate
geochemical cycles, B6:9
vs. depth, B6:20
phospholipid fatty acids
sediments, B8:6-11, 24
vs. depth, B8:18-20
vs. time, B8:17
photoelectric effect logs, vs. depth, A4:161
physical properties
Site 1040, B1:24-25
Site 1253, A1:20; A4:5, 37-41
Site 1254, A1:32; A5:7, 22-25
Site 1255, A1:36; A6:4, 12-13
plagioclase
gabbro, A4:29
photomicrograph, A1:57; A4:89-90, 92, 99, 106-110, 113
tephra, A4:23
titanium oxide vs. vanadium, B9:25
vs. depth, A4:87-88, 93-98, 100-104
plagioclase aggregates
gabbro, A4:28-35
lithologic units, A4:26-28
plagioclase morphology, vs. depth, A4:87-88, 93-98, 100-104
Planolites
lithology, A4:21
photograph, A4:75
plate tectonics, oceanic, convergent margins, A1:7-8; B1:3-5
plate tectonics, subduction zones, A1:1-3
Pleistocene
forearc wedges, B1:16
geologic timescale, B14:19
nannofossil biostratigraphy, B14:1-26
quinones, B8:19
Pliocene
forearc wedges, B1:16
geologic timescale, B14:19
nannofossil biostratigraphy, B14:1-26
quinones, B8:19
plume-ridge interaction, off-axis, igneous complex, B9:1-38
plumes, overprinting, B9:12-13
polymerase chain reaction, contamination, A4:52-53
pore pressure
décollement zone, A1:13
vs. depth, A1:52
pore water
geochemistry, A4:46-48, 177-178; A5:28-33, 107-
108; A6:14-17, 50-51; B1:18-21; B2:5; B5:1-21
hydrology, B6:1-26
porosity
geochemical cycles, B1:29; B6:1-26
lithology, A4:37-38
sediments, A5:23-24; A6:12
vs. compressional wave velocity, A4:134
vs. depth, A4:130; A5:45, 70, 73; A6:37; B6:21, 23; B9:22
porosity, fractional
carbonates, B10:14
vs. permeability, B10:11-12; B11:10
porosity logs
lithology, A4:61-62
vs. depth, A1:55-56; A4:71-73, 162; B13:13
See also neutron porosity logs
potassium
geothermal gradient, A5:32-33
pore water, A4:46; A5:29-30; A6:15
sediments, A4:24
vs. depth, A4:144; A5:82; B5:13; B6:22
potassium logs, vs. depth, A4:161
potassium oxide
sediments, A4:24; A5:17; A6:10
tephra, A5:18
vs. depth, A4:84; A5:59
vs. magnesium number, B9:26-27
vs. silica, A5:61
See also sodium oxide + potassium oxide

pressure

CORK-II, A2:7-8, 25-26

Davis-Villinger probe, A4:55-57; A5:37-39
incoming plate, B1:26-28
vs. time, A4:155, 157-158; A5:88-91; B1:52-53; B10:10
pressure-temperature conditions, Davis-Villinger probe, A4:55-57; A5:37-39
prism fault zones, deformation, A5:20
prism wedges
fluid flow, B6:7-8, 11-13
hydrology, B6:1-26
productivity index, sediments, A5:112
propane
geochemical cycles, B1:20; B6:12
sediments, A5:35; A6:18-19
vs. depth, A1:51; A5:45, 86-87; A6:43; B1:44; B6:22
See also methane/propane ratio
Proteobacteria, microbial divergence indexes, B8:9
pyroxene
gabbro, A4:29
vs. depth, A4:87-88, 93-98, 100-104

Q

quartz
lithology, A6:8-9
photomicrograph, A5:55
tephra, A4:23
See also cristobalite/quartz ratio
quinones
microbial divergence indexes, B1:24; B8:9-10, 25-26
sediments, B8:6-11
vs. depth, B8:18-21

R

radiolarians, photomicrograph, A5:51
rare earths
crystal accumulation, B9:12, 32
igneous rocks, B9:7
rare earths, chondrite-normalized, igneous rocks, B9:28
reaction fronts, décollement, B6:8-9, 13-14
recrystallization, photograph, A6:32
redeposition
blocks, A6:9
parallel laminations, A4:20
photograph, A5:54
Redfield ratio, sediments, A6:19
remanent magnetization, anhysteretic, hemipelagic sedi-
ments and igneous rocks, A4:43-44
remanent magnetization, isothermal
magnetic intensity, A4:139
sediments, A4:41-42
remanent magnetization, natural
gabbro, A4:42-43
sediments, A4:41-42; A5:25-26
vs. depth, A4:138
remanent magnetization, postdepositional, sediments, A4:42
remanent magnetization, saturation, magnetic intensity, A4:139
remanent magnetization, saturation isothermal
hemipelagic sediments, A4:43
hemipelagic sediments and igneous rocks, A4:43-44
remanent magnetization, thermal, hemipelagic sedi-
ments and igneous rocks, A4:43-44
resistivity logs
lithology, A4:62
See also deep resistivity logs; medium resistivity logs; shallow resistivity logs
reverse grading, photograph, A5:56
Riedel shear surfaces
sediments, A5:20
stereographic projection, A5:66
Rock-Eval data, sediments, A5:112; A6:55
rock magnetism, sediments and igneous rocks, A4:43-44
rubidium
pore fluids and sediments, B5:5-7, 21
vs. depth, B5:12-15

S

salinity
geochemical cycles, B6:26
pore water, A4:46; A5:28-29; A6:14-15
vs. depth, A5:82
samarium
basalt, B9:9-10
See also lanthanum/samarium ratio
sand
photograph, A5:52
vs. depth, A4:79; A5:53; A6:28
sand, silty, quinones, B8:19
sand-silt intervals, lithology, A6:8-9
sandstone, lithology, A6:8-9
sandstone, micritic, photomicrograph, A5:55
saponite
alteration, A4:32-33
gabbro sills, A4:28
tephra, A4:23
scolecite
alteration, A4:33
X-ray diffraction data, A4:111
seawater, contamination, A4:181-182
sediment sources
carbon-nitrogen evidence, B7:8-11
total organic carbon/total nitrogen ratio, B7:8-11
sedimentation rates, age vs. depth, Site 1053, B4:4-5
sediments
barium cycles, B2:8-9, 20-21
chemical composition, A4:172
contamination, A4:50-53
geochemistry, A1:17-18; A5:16-17; A6:10, 45; B1:2123; B5:1-21
magnetic inclination, A4:143
paleomagnetism, A4:41-42
photograph, A6:27
Rock-Eval data, A6:55
smear slides, A4:21-22; A5:14-15
structures, A4:35-36
X-ray diffraction data, A4:22-23, 170-171; A5:18-19, 95-103; A6:11, 46-49
sediments, clastic, underthrusting, A6:9
sediments, forearc prism, photograph, A1:67
sediments, hemipelagic
permeability and consolidation, B10:1-24; B11:1-13
photograph, A1:68
rock magnetism, A4:43-44
subduction factory, Central America, A1:5-6
sediments, metalliferous
geochemistry, B1:16-17
See also metalliferous sediment index
sediments, pelagic, permeability and consolidation, B10:1-24; B11:1-13
sediments, subducting, permeability and consolidation, B10:1-24; B11:1-13
sediments, subseafloor, habitability, B8:1-26
sediments, wedge, carbon and nitrogen geochemistry, B7:1-38
seismic profiles
Middle America Trench, A1:47; B1:4, 42; B6:18; B7:26, 33; B8:16; B9:21; B10:7; B14:14
Site 1043, A1:71
Site 1253, A1:54; A4:68; B2:15; B4:8
Site 1254, A1:65; A5:44; B2:15
Site 1255, A1:71; A6:24
seismogenic zones, subduction zones, A1:5-6; B1:13-14
sensitivity analysis, geochemical cycles, B6:12
shallow resistivity logs, vs. depth, A1:55-56; A4:71-72, 163; B9:22
shear wave velocity
fractures, B13:7
vs. depth, B13:17
shear wave velocity logs, vs. depth, A4:164
shear zones
igneous units, A4:36
photograph, A5:47-48
quinones, $\mathrm{B} 8: 22$
sediments, A5:20
shear zones, brittle, stereographic projection, A5:69
shear zones, conjugate brittle
photograph, A4:127
stereographic plot, A4:129
silica
diagenesis, A4:21
gabbro, A4:33
pore water, A4:47; A5:32; A6:17
sediments, A4:23; A5:17; A6:10
tephra, A4:25
vs. depth, A1:62; A4:70, 82, 147; A5:58
vs. potassium oxide, A5:61
vs. sodium oxide + potassium oxide, B9:23
silica, biogenic, titanium/aluminum ratio, B3:4
silicon, vs. depth, A5:84
sills
age, B1:15-16
emplacement, B9:12-13
pore water, A4:47-48
silt
photograph, A5:50; A6:30
redeposition, A6:9
See also sand-silt intervals
silt, palagonitic, photomicrograph, A6:29
silt, volcanic, photomicrograph, A6:29
siltstone
diagenesis, A6:10
photomicrograph, A5:51; A6:29
siltstone, lithified, photograph, A6:34
Site 574, stable isotopes, B4:14-15
Site 1039
barium, B2:16
carbon and oxygen isotopes, B4:1-18
pore fluid geochemistry, B1:43
seismic profiles, A1:54
stable isotopes, B4:1-18
stratigraphy, B14:16
Site 1039/Site 1253
lithology, B6:19
pore fluid geochemistry, B5:3-4
stratigraphy, B14:16
sulfate, B6:21
Site 1040
barium, B2:16
carbon and nitrogen geochemistry of wedge sediments, B7:1-38
carbon and oxygen isotopes, B4:1-18
permeability, B11:1-13
seismic profiles, A1:65
stratigraphy, B14:17
Site 1040/Site 1254
lithology, B6:19
pore fluid geochemistry, B5:4
pore water data, B6:22
reaction fronts, B6:23
stratigraphy, B14:17
Site 1043
seismic profiles, A1:71
stratigraphy, B14:18
Site 1043/Site 1255
fluid flow, B6:22
lithology, B6:19
pore fluid geochemistry, B5:4
pore water data, B6:22
reaction fronts, B6:23
stratigraphy, B14:18
underthrust sediments, B6:22
Site 1253, A4:1-184
alteration, A1:18-19
altered sediments, B3:1-16
Alvin submersible postcruise visit to CORK-II, A1:3637; A2:12-13
barium, B2:16
borehole installation, B1:45
calcareous nannofossil biostratigraphy, B14:1-26
calcareous nannofossil range and zonation, B14:22
carbon and oxygen isotopes, B4:1-18
coring summary, A4:169
CORK-II, A1:25-26; A2:11; A4:11
downhole logging, A1:22-23; A4:7-9, 58-64; B13:13
downhole measurements, A1:22; A4:7, 53-57
fluid flow, A1:23-24; A4:9
igneous and metamorphic petrology, A1:18-19; A4:34, 27-35
igneous stratigraphy, A1:24-25; A4:9-10; B9:1-38
inorganic geochemistry, A1:20-21; A4:6, 45-48
lithostratigraphy, A1:17-18; A4:3, 19-26
location, A4:67
microbiology, A1:21; A4:6-7, 49-53
monitoring of incoming plate, B1:26-28
operations, A4:11-19
organic geochemistry, A1:21; A4:6, 48-49
paleomagnetism, A1:20; A4:5-6, 41-45
permeability and consolidation, B10:1-24; B11:1-13
phospholipid fatty acids, B8:18
physical properties, A1:20; A4:5, 37-41
reference site, A1:13-15
science objectives, A1:13-15
sediment geochemistry, A1:17-18; A4:3
seismic profiles, A1:54
site description, A4:1-184
site summary, A1:16-26; A4:1-11
stratigraphy, B14:16
structural geology, A1:19; A4:4-5, 35-36
temperature, B12:1-20
Site 1254, A5:1-113
Alvin submersible postcruise visit to CORK-II, A2:12-13
barium, B2:16
calcareous nannofossil biostratigraphy, B14:1-26
calcareous nannofossil range and zonation, B14:2324
coring summary, A5:92
data summary, A1:66
downhole measurements, A1:32-33; A5:7-8, 37-39
inorganic geochemistry, A1:30-32; A5:5-7, 27-33
lithostratigraphy, A1:27-28; A5:2-3, 13-19
location, A1:64; A5:42-43
microbiology, A1:32; A5:7, 36
operations, A5:8-13
organic geochemistry, A1:32; A5:7, 33-36
paleomagnetism, A1:30; A5:5, 25-27
permeability and consolidation, B10:1-24
phospholipid fatty acids, B8:19
physical properties, A1:32; A5:7, 22-25
quinones, B8:21
science objectives, A1:15-16
seismic profiles, A1:65
site description, A5:1-113
site summary, A5:1-8
stratigraphy, B14:17
structural geology, A1:28-30; A5:3-5, 20-22
Site 1255, A6:1-55
Alvin submersible postcruise visit to CORK-II, A1:36-37 borehole installation, B1:46
calcareous nannofossil biostratigraphy, B14:1-26
calcareous nannofossil range and zonation, B14:25
coring summary, A6:44
CORK-II, A1:36; A2:11-12; A6:4, 26
inorganic geochemistry, A1:35; A6:3, 14-17
lithostratigraphy, A1:34; A6:2, 7-11
location, A1:70; A6:22-23
microbiology, A1:35; A6:3, 19-20
operations, A6:4-7
organic geochemistry, A1:34-35; A6:2-3, 18-19
paleomagnetism, A1:35; A6:3, 13
permeability and consolidation, B10:1-24; B11:1-13
phospholipid fatty acids, B8:20
physical properties, A1:36; A6:4, 12
science objectives, A1:15-16
seismic profiles, A1:71
site description, A6:1-55
site summary, A6:1-4
stratigraphy, B14:18
structural geology, A1:34; A6:2, 11
temperature, B12:1-20
slickenlines, vs. depth, A5:64
slickensides, vs. depth, A5:64
smear slides, sediments, A4:21-22; A5:14-15
smectite
sediments, A4:22; A5:19
tephra, A4:23
vs. depth, A5:63
smectite-illite clays, sediments, A4:22
sodium
pore water, A4:46; A5:29; A6:15
vs. depth, A4:144; A5:82
sodium/chloride ratio
pore water, A5:29
vs. depth, A4:144
sodium oxide
gabbro, A4:34
sediments, A4:24
vs. depth, A4:84, 114; A5:59
vs. strontium, A4:119
sodium oxide + potassium oxide
alkalis-iron-magnesium diagram, B9:24
vs. silica, B9:23
sponge spicules
photograph, A4:77
photomicrograph, A4:78
stable isotopes
sediments, B1:21-23
subducting pelagic sections, B4:1-18
stilbite
alteration, A4:33
photomicrograph, A1:61; A4:113
X-ray diffraction data, A4:112
Stoneley velocity logs, vs. depth, A4:164; B1:48
Stoneley wave energy estimated loss, vs. depth, B13:1820
Stoneley wave velocity, vs. depth, B13:18-19
Stoneley waves
fracture density, B13:1-22
permeability, B13:6-9
stratigraphy, igneous rocks, B9:7
stress, effective
test results, B11:11-12
vs. void ratio, B10:9
strontium
pore water, A4:46-47; A5:30; A6:15-16
sediments, A4:24; A5:17
vs. depth, A1:50, 62; A4:70, 83, 114, 146; A5:60, 83; B1:43; B6:20
vs. sodium oxide, A4:119
strontium isotopes
igneous rocks, B1:13; B9:8-9
pore fluids, B5:5-7, 20
pore water, B1:43
vs. 1/strontium ratio, B5:17
vs. depth, A1:50; B1:43, 49; B5:19
vs. neodymium isotopes, B9:29
structural geology
Site 1253, A1:19; A4:4-5, 35-36
Site 1254, A1:28-30; A5:3-5, 20-22
Site 1255, A1:34; A6:2, 11
structures
décollement zone, A6:35
gabbro, A4:36
sediments, A4:35-36; A5:104-106
vs. depth, A5:64; B1:44
subduction factory
nitrogen flux, B7:12-13
seismogenic zones, A1:5-6; B1:13-14, 28-29
subduction flux, fluid flow, B1:1-54
subduction recycling, geochemistry, B1:23-24
subduction zones
calcareous nannofossil biostratigraphy, B14:1-26
Central America, A1:1-3
CORK-II, A2:1-36
seismogenic zones, A1:5-6
sulfate
geochemical cycles, B6:9-14
microbial divergence indexes, $\mathrm{B} 8: 10$
pore water, A4:46; A5:30-31; A6:16; B1:18-19
vs. depth, A1:62; A4:70, 145; A5:85; B1:51; B2:16; B6:20-21, 23
sulfate depletion zone
barium, B2:7
pore water, A5:30-31
sulfur, total
sediments, A4:180; A5:35, 111; A6:19, 54
sediments and igneous rocks, A4:48-49
sulfur, vs. depth, A4:149; A5:88

T
tantalum
igneous rocks, B9:9-11
See also hafnium/tantalum ratio
temperature
CORK-II, A2:6-7, 23
data logger, A4:154
Davis-Villinger probe, A4:55-57; A5:37-39
high-resolution methods, A4:53-55
incoming plate, B1:26-28
long-term measurements, B12:1-20
vs. depth, A4:156
vs. time, A4:152, 155, 157-158; A5:88-91; B1:52; B12:14-18
vs. water depth, A4:153
See also conductivity-temperature-depth; pressuretemperature conditions
temperature events, long-term measurements, B12:5-6
tephra
geochemistry, B1:17-18
grain size, A5:57
lithology, A4:20; A6:10
location, A5:93
photograph, A5:56
photomicrograph, A4:85
stratigraphy, A5:15-16
tholeiite, A5:61
textures, gabbro sills, A4:27-28
thermal conductivity
lithology, A4:38-39
vs. depth, A4:133
tholeiite, tephra, A5:61
thomsonite
alteration, A4:33
photomicrograph, A1:58; A4:113
thorium logs, vs. depth, A4:161
titanium, sediments, B3:4
titanium/aluminum ratio
sediments, A4:23; A5:17; B3:4
vs. calcium carbonate, B3:8
vs. depth, A4:82; A5:58; B3:7
vs. iron oxide, B3:9
titanium oxide
gabbro, A4:34
sediments, A4:23; A5:17
tephra, A4:25
vs. depth, A4:82, 114; A5:58
vs. vanadium, A4:115; B9:25
See also vanadium/titanium oxide ratio
trace elements
gabbro, A4:33-35
igneous rocks, B1:14; B9:9-10, 35-38
sediments, A4:23-24; A6:10; B3:14-15
sediments and tephra, A5:94, 16-18
tephra, A4:25
vs. depth, A4:114
vs. magnesium number, B9:26-27
trace fossils, lithology, A4:21
transition metals, sediments, B3:4
transport-reaction model, hydrology, B6:1-26
turbidite, trench, photograph, A6:31

U

ubiquinones, microbial divergence indexes, B8:9-10
ubiquinones/menaquinones ratio, vs. depth, B8:18-20
underplating, plate tectonics, A1:8-10; B1:6
underthrusting
brecciation, A6:11
clastic sediments, A6:9
hydrology, B1:5-7; B6:4-5
photograph, A1:67; A5:46
quinones, B8:20
uranium logs, vs. depth, A4:161

v

vanadium
gabbro, A4:34
sediments, B3:4
vs. depth, A4:114
vs. titanium oxide, A4:115; B9:25
vanadium/titanium oxide ratio, vs. magnesium number, B9:26-27
veins
gabbro, A4:29
gabbro sills, A4:27-28
photograph, A4:87-88, 91, 93-96, 100-101, 104
photomicrograph, A1:58, 61
vs. depth, A4:87-88, 93-98, 100-104
veins, magmatic
contour plots, A4:126
pyroxene gabbro, A4:125
velocity, acoustic, lithology, A4:39
velocity logs
lithology, A4:62-63
vs. depth, A1:55-56; A4:71-73, 162, 164; B9:22; B13:13
See also compressional wave velocity logs
void ratio, vs. effective stress, B10:9
voids
gabbro, A4:29
gabbro sills, A4:27-28
photograph, A4:93-94, 97-98, 102-103
vs. depth, A4:87-88, 93-98, 100-104
volcanic ash
alteration, A1:11-13
geochemistry, B1:17-18
photograph, A4:80
photomicrograph, A4:78; A5:51
stratigraphy, A5:15-16
titanium/aluminum ratio, B3:4
volcanic ash, altered, photograph, A5:50
volcanic glass
alteration, A4:32-33; A6:10
lithology, A6:9
photomicrograph, A4:90, 108
tephra, A4:20
vs. depth, A4:79; A5:53; A6:28
volcanic glass, altered, gabbro sills, A4:27-28
volcanic glass, palagonitized, photomicrograph, A4:85
volcanic glass, xenomorphic, gabbro sills, A4:27-28
volcanic rocks, altered, photomicrograph, A5:55
volcanics, lithology, A6:10
volcanism
subduction factory, A1:5-6
tephra, A4:26

w

wackestone fragments, redeposition, A6:9
water budget, hydrothermal circulation, B6:11
waveforms, borehole diameter, B13:6
weathering, photomicrograph, A4:110
well-logging
summary diagram, A4:159, 184
See also downhole logging

X

X-ray diffraction data
clays, A5:102-103
igneous rocks, A4:173
sediments, A4:22-23, 170-171; A5:18-19, 95-103; A6:11, 46-49

Y

yttrium, vs. depth, A4:114

Z

zeolites
alteration, A4:33
gabbro sills, A4:28
photograph, A1:58-59; A4:80, 87-88, 95-98
photomicrograph, A1:61; A4:78, 113
X-ray diffraction data, A4:111-112

Zijderveld diagrams, discrete samples, A4:142; A5:81 zinc
sediments, B3:4
vs. barium, B3:11
zirconium
gabbro, A4:34-35
vs. chromium, A4:118
vs. depth, A4:114
Zoophycos
lithology, A4:21
photograph, A4:81

TAXONOMIC INDEX

A

ampliaperta, Helicosphaera, Site 1253, B14:6

B

belemnos, Sphenolithus, Site 1253, B14:6
brouweri, Discoaster, Site 1254, B14:7-8

C

Calcidiscus macintyrei, Site 1254, B14:8
caribbeanica, Gephyrocapsa, Site 1255, B14:8

D

Discoaster brouweri, Site 1254, B14:7-8
Discoaster pentaradiatus, Site 1254, B14:7-8

G

Gephyrocapsa caribbeanica, Site 1255, B14:8
Gephyrocapsa oceanica, Site 1255, B14:8

H

Helicosphaera ampliaperta, Site 1253, B14:6
Helicosphaera sellii, Site 1255, B14:8
heteromorphus, Sphenolithus, Site 1253, B14:6

L

lacunosa, Pseudoemiliania
Site 1254, B14:7

Site 1255, B14:8

M

macintyrei, Calcidiscus, Site 1254, B14:8

0

oceanica, Gephyrocapsa, Site 1255, B14:8

P

pentaradiatus, Discoaster, Site 1254, B14:7-8
Pseudoemiliania lacunosa
Site 1254, B14:7
Site 1255, B14:8
pseudoumbilica, Reticulofenestra, Site 1254, B14:7-8

R

Reticulofenestra pseudoumbilica, Site 1254, B14:7-8

S

sellii, Helicosphaera, Site 1255, B14:8
Sphenolithus belemnos, Site 1253, B14:6
Sphenolithus heteromorphus, Site 1253, B14:6
Sphenolithus spp., Site 1254, B14:7-8

Z

zones (with letter prefixes)
NN4, Site 1253, B14:6

