INDEX TO VOLUME 206

This index covers both the Initial Reports and Scientific Results portions of Volume 206 of the Proceedings of the Ocean Drilling Program. References to page numbers in the Initial Reports are preceded by “A” followed by the chapter number with a colon (A1:) and to those in the Scientific Results (this volume) by “B” followed by the chapter number with a colon (B1:).

The index was prepared by Earth Systems, under subcontract to the Ocean Drilling Program. The index contains two hierarchies of entries: (1) a main entry, defined as a keyword or concept followed by a reference to the page on which that word or concept appears, and (2) a subentry, defined as an elaboration on the main entry followed by a page reference.

The index covers volume text, figures, and tables but not core-description forms (“barrel sheets”), core photographs, smear slide data, or thin section descriptions. Also excluded from the index are bibliographic references, names of individuals, and routine front matter.

The Subject Index follows a standard format. Geographical, geologic, and other terms are referenced only if they are subjects of discussion. A site chapter in the Initial Reports is considered the principal reference for that site and is indicated on the first line of the site’s listing in the index. Such a reference to Site 1256, for example, is given as “Site 1256, A3:1–396.”

The Taxonomic Index is an index relating to significant findings and/or substantive discussions, not of species names per se. This index covers three varieties of information: (1) individual genera and species that have been erected or emended formally, (2) biostratigraphic zones, and (3) fossils depicted in illustrations. A taxonomic entry consisting of both genus and species is listed alphabetically by genus and also by species. Biostratigraphic zones are listed alphabetically by genus; zones with letter prefixes are listed under “zones.”

SUBJECT INDEX

A
accretion, crust, A1:10–11
age vs. depth
basement, A1:41; A3:103
Neogene nannofossil datums, A1:64; A3:129; B2:21
summary, A3:121–122
albite
alteration, A3:66
basement secondary mineral geochemistry, B8:3
photograph, A3:208
photomicrograph, A3:209–211, 222
replacement, B7:3
veins, A1:32
alkalinity
pore water, A3:38
vs. depth, A3:148
alteration
basement, A3:65–73
geochemistry, A3:236; B8:1–16
photograph, A3:218–219, 282
spectroscopy, B12:1–13
See also hydrothermal alteration
alteration front, photomicrograph, A3:235
alteration halos
composition, A3:66–73
lava, B1:7
photograph, A3:218, 224, 229, 231–232, 237
photomicrograph, A3:225–228, 230
See also oxidation halos
alteration halos, black, composition, A3:68
alteration halos, brown, composition, A3:68–69
alteration halos, mixed, composition, A3:69
alteration types, vs. depth, A1:90; A3:223
alteration zones, vs. depth, A1:95; A3:256
aluminum
hyaloclastite, A3:70
intensive low-temperature hydrothermal alteration, A3:71
sediments, A3:42
shipboard vs. shore-based digestion, B3:14
shore-based flux vs. shore-based microwave acid digestion, B3:12–13
vs. depth, B3:15
See also calcium/aluminum ratio; iron/aluminum ratio
aluminum/titanium ratio, vs. depth, B3:16
aluminum oxide
vs. depth, A1:81; A3:152, 194; B5:6
vs. magnesium number of clinopyroxene, B5:25
vs. magnesium oxide, A1:88; A3:199
ammonium
 pore water, A3:38
 vs. depth, A3:148

amphibole
 photograph, A3:238, 243
 photomicrograph, A3:239–241

amygdules, photograph, A3:244, 269

anorthite, basement secondary mineral geochemistry, B8:3

apatite
 basement secondary mineral geochemistry, B8:3, 16
 groundmass, A3:57–59
 photomicrograph, A3:210
 replacement, B7:3

aragonite
 photomicrograph, A3:205
 veins, A3:72; B10:1–6

augite
 basalts, A1:29; A3:57; B5:6
 grain size vs. depth, A3:61–63, 187; B5:9–10
 groundmass, A3:57–59
 photomicrograph, A3:220
 augite, granular, photomicrograph, A3:183
 augite microphenocrysts, photomicrograph, A1:80; A3:178
 augite phenocrysts, photomicrograph, A3:179

barite, mass accumulation rates, A3:44

barium
 lava, B1:7
 shipboard vs. shore-based digestion, B3:14
 shore-based flux vs. shore-based microwave acid digestion, B3:12–13
 vs. depth, A3:152; B3:15; B6:6
 barium/lanthanum ratio
 basement, B6:3
 vs. depth, B6:7
 barium/titanium ratio
 mass accumulation rates, A3:45–46
 sediments, A1:25; A3:154
 vs. depth, A1:67; B3:16

basalts
 average grain size, A3:373–374
 digital imaging, A3:90–93, 318–320
 digital photomicrograph log, A3:372
 lithologic units, A3:53–65
 microbiology, A1:34–35
 modal analysis data, A3:371
 paleomagnetism, A1:33–34
 petrography, A1:28–30; A3:55–64
 photograph, A3:213, 224, 237–238, 244
 photomicrograph, A3:177–186, 309
 physical properties, A1:34
 recrystallization, A3:59–64
 scanning electron microscopy, B5:16, 18, 20
 structure, A1:32–33
 textures, B5:1–32

calcite
 basement secondary mineral geochemistry, B8:3, 16
replacement, B7:3
veins, A3:72; B10:1–6
visible and near-infrared spectroscopy, A3:49
vs. depth, A3:158
See also calcium carbonate
calcite, measured, vs. predicted calcite, A3:159
calcite, predicted
vs. depth, A3:158
vs. measured calcite, A3:159
calcium
pore water, A3:39–40
sediments, A3:42
shipboard vs. shore-based digestion, B3:14
shore-based flux vs. shore-based microwave acid digestion, B3:12–13
vs. depth, A3:149; B3:15
See also iron/calcium ratio; lithium/calcium ratio;
magnesium/calcium ratio; manganese/calcium ratio;
potassium/calcium ratio; strontium/calcium ratio
calcium/aluminum ratio, vs. depth, A1:85; A3:198
calcium carbonate
alteration, B1:8
mass accumulation rates, A3:43–44
photograph, A3:244
sediments, A3:41–42
calcium oxide
titanium hydrogarnet, B9:2–6
vs. depth, A1:82; A3:152, 195
vs. magnesium oxide, A1:88; A3:199
caliper logs, vs. depth, A3:161, 322–330
carbon, dissolved organic
pore water, A3:38
vs. depth, A3:148
carbon, organic
sediments, A3:41–42
vs. depth, A1:66; A3:151
carbon, productivity proxies, B4:7–8
carbon isotopes
carbonate crash, B4:5–6
vs. age, B4:21
vs. carbonate mass accumulation rates, B4:21
vs. oxygen isotopes, B4:21
carbonate compensation depth
carbonate crash models, B4:12
mass accumulation rates, A3:44; B2:9–10
carbonate content
vs. age, B2:22
vs. depth, A1:56; A3:126, 151
carbonate crash
biostratigraphy, B1:4; B2:10–11
mass accumulation rates, A3:45–46
middle–upper Miocene, B4:1–24
Miocene, A1:24
models, B4:8–10
proposed models, B4:10–12
timing, B4:8
carbonate fibers, stretched, photograph, A3:278
carbonates
accumulation in open oceans, B4:8
diagenesis, B4:6–7
mass accumulation rates vs. age, A3:153
photomicrograph, A3:212, 279
productivity, B4:1–24
productivity proxies, B4:7–8
vs. age, B4:22–23
vs. depth, A3:255
carbonates, biogenic, geochemistry, B3:1–26
celadonite
alteration, B1:8
basement secondary mineral geochemistry, B8:2–3, 5–10
halos, A3:68–73
intensive low-temperature hydrothermal alteration, A3:71
replacement, B7:3
veins, A3:71–72
vs. depth, A3:255
Cenozoic, upper, nannofossil biostratigraphy, B2:1–25
cesium
lava, B1:7
vs. depth, B6:6
chalcedony
basement secondary mineral geochemistry, B8:3
photograph, A3:232, 244
photomicrograph, A3:205, 253–254, 309
replacement, B7:3
chalcopyrite, photograph, A3:243
chemical analysis
shipboard vs. shore-based digestion, B3:8, 26
shore-based flux vs. shore-based microwave acid digestion, B3:7–8, 19–25
chert, lithologic units, A1:23; A3:25–26
chilled margins
folding, A3:75
photograph, A1:76; A3:164, 171
photomicrograph, A3:186
recrystallized basalts, A3:61
chloride
pore water, A3:38
vs. depth, A3:147
See also sodium/chloride ratio
chlorite
alteration, A3:66
basement secondary mineral geochemistry, B8:3
photograph, A3:238
photomicrograph, A3:205, 253–254, 309
replacement, B7:3
chlorite-smectite mixed-layer minerals, geochemistry, B7:2–3
Chondrites, lithologic units, A3:23–26
chromaticity
lithologic units, A3:24–26
vs. depth, A3:126
chromium
hyaloclastite, A3:70
intensive low-temperature hydrothermal alteration, A3:71
lava, B1:6
shipboard vs. shore-based digestion, B3:14
shore-based flux vs. shore-based microwave acid digestion, B3:12–13
vs. depth, A1:84; B3:15
vs. magnesium oxide, A1:89; A3:200
Chron C1n, magnetostratigraphy, A3:35
Chron C3An.1n, magnetostratigraphy, A3:35
Chron C3An.1r, magnetostratigraphy, A3:35
Chron C3r, magnetostratigraphy, A3:35
Chron C4n.1r, magnetostratigraphy, A3:35
Chron C5Br–C5Bn interval, basalts, A3:85
Chron C5n.2n, magnetostratigraphy, A3:35
Clipperton Fracture Zone, seafloor spreading, A1:9–10
Cocos/Nazca/Pacific plate triple junction, seafloor spreading, A1:9–10
Cocos/Pacific plate boundary
age map, A1:46; A3:105
seafloor spreading, A1:9–10
Cocos plate
age map, B1:12
drilling summary, A1:1–117
geology, A1:10–11
Cocos Ridge
crust, A1:10–11
See also Pacific-Cocos Ridge
coercivity
basalts, A3:84–85
demagnetization, A3:291–299
compressional wave velocity
basalts, A3:88–89
sediments, A3:48
vs. depth, A1:69; A3:155
vs. porosity, A3:157
contamination, microbial activity, A3:86
core imaging
interpretation, A3:92–93
processing, A3:91–92
coring, orientation, A3:354
Coriolis effect, carbonate crash, B4:3
correlation, magnetic susceptibility, A3:31–32
cracks, photograph, A3:173
Cruise EW9903, site survey results, A4:1–49
crust, oceanic
formation at superfast spreading rate, A1:26–36, 44;
A3:3–5; B1:1–15
in situ drilling, A1:3–6; B1:1–15
in situ drilling
vs. porosity, A3:155, 310–311, 392–394; B13:8–10
crust, upper oceanic
hydration, B12:1–13
physical properties, B13:1–11
seafloor spreading, A1:9–10
Crystal aggregates, lava ponds, B5:3
crystallites, groundmass, A3:58–59
crystals, acicular, lava ponds, B5:3
deep water, carbonate crash models, B4:8–10
deformation, intracrystalline, basalts, A3:73–74
deformation, photomicrograph, A3:193
deformation, shear, photomicrograph, A3:280
demagnetization, alternating-field
principal component analysis, A3:134, 137–140
demagnetization, split cores, A3:32–33
demagnetization, thermal, vector plots, A1:99; A3:300–301
density
basalts, A3:87–88
sediments, A3:47
vs. depth, A1:69; A3:155, 310–311, 392–394; B13:8–10
density, bulk
vs. porosity, A3:315; B13:7
vs. velocity, A3:314
density, gamma ray attenuation bulk, vs. depth, A3:121–122, 155
density, matrix, vs. porosity, B13:7
density, multisensor track and moisture and density, upper oceanic crust, B13:1–11
density logs, vs. depth, A3:322
devitrification, lava ponds, B5:2–3
diagenesis, carbonates, B4:6–7
diatom mats
mass accumulation rates, B2:9–10
photograph, A3:127
diatom mats, laminated, geochemistry, B3:1–26
diatomite, lithologic units, A3:24–26
diatoms
 - lithologic units, A1:23; A3:23–24
 - vs. depth, A3:123
digital imaging
 - basalts, A3:90–91; B11:11–26
 - basement, A3:90–93, 318–320, 395
dikes
 - lithologic units, A3:55
 - photograph, A3:174
dip
 - photograph, A3:273
 - primary magmatic layering, A3:261
 - structure reorientation, B11:1–26
 - structures, A3:80, 287, 289
dissolution
 - carbonate compensation depth, B2:10–11
 - carbonate crash, B1:5; B4:1–24
downhole measurements
 - basement, A3:93–97
 - sedimentary overburden, A3:49–52
drilling
 - depth, A1:42–43; A3:104

E
East Antarctic Ice Sheet, carbonate crash models, B4:9
East Pacific Rise, drilling summary, A1:1–117
epoch boundaries, list, A3:341
Equatorial Undercurrent, carbonate crash, B4:3

F
fabric, magmatic
 - basalts, A3:73–74
 - veins, A1:32–33
faults, photograph, A3:128
feldspar
 - basement secondary mineral geochemistry, B8:3, 12–15
 - photograph, A3:244
 - photomicrograph, A3:245
 - replacement, B7:12
fissures, extension, photomicrograph, A3:271
flow banding
 - photograph, A3:263
 - photomicrograph, A3:264
flow structures, photomicrograph, A3:185
folding
 - basalts, A3:74–75
 - photograph, A1:74; A3:165, 167, 263, 265
 - photomicrograph, A3:185, 262, 264
foraminifers
 - carbonate crash models, B4:9
 - vs. depth, A3:123
formation capture cross section logs, vs. depth, A3:322
Formation MicroScanner imaging, vs. depth, B11:11–12
Formation MicroScanner imaging logs, vs. depth, A3:322, 325–330
fractures
 - types and geometry, A3:76–78

G
gamma ray logs, vs. depth, A3:161, 322–323
gamma rays
 - basalts, A3:89
 - sediments, A3:48
 - vs. depth, A3:156, 203, 312–313; B13:8–10
garnet. See also hydrogarnet; hydroschorlomite
garnet, andraditic, with celadonite, B1:7
geochemistry
 - sediments, B3:1–26
 - summary, A1:25–26
geochemistry, igneous, basement, A3:52–65
geochemistry, inorganic, sedimentary overburden, A3:36–41
geochemistry, sediment, sedimentary overburden, A3:41–46
gophysical anomalies, isochrons, A4:9
geothermal gradient, downhole measurements, A3:49–50
glass shards, photomicrograph, A3:235
glassy margins
 - photograph, A1:75; A3:168–169
 - photomicrograph, A3:177
glaucnite bands, photograph, A3:128
grain size
 - average size, A3:373–374; B5:26–27
 - average size of recrystallized base, B5:28
 - Lowrie-Fuller tests, A3:141
 - variations of groundmass crystals, B5:22–23
 - vs. depth, A3:187–188, 190–191; B5:4–5
 - gravity surveys, profile maps, A4:13, 25, 37, 49
 - groundmass
 - basalts, A3:57–59
 - lava ponds, B5:2–3
 - photomicrograph, B5:19–21
 - textures, A3:58–59
Guatemala Basin
 - Cruise EW9903, A4:1–49
 - geology, A1:10–11

H
hafnium, vs. depth, B6:6
heat flow
 - downhole measurements, A3:49–50
 - summary, A1:26; A3:366
 - vs. depth, A1:70; A3:160
hematite, alteration, A3:66
hyaloclastite
 - alteration, A3:70
 - lithologic units, A3:54–55
 - photograph, A1:76; A3:170–171, 234, 282
 - photomicrograph, A3:235, 282
hydration
 - core spectroscopy, B12:11
 - upper oceanic crust, B12:1–13
 - vs. depth, B12:12–13
hydrogarnet, titanium
geochemistry, B9:1–6
photomicrograph, B9:4
hydrogarnet, titanium with celadonite, B1:7
hydrothermal alteration, low-temperature, basalts, A3:71; B1:7
hydrothermal alteration, photograph, A3:237, 244

Igneous contacts, photograph, A3:174
Igneous petrology, basement, A3:174
Igneous rocks
stratigraphy, A1:26–28; A3:162–163, 368
vs. depth, A1:71–72
Indonesian Seaway, carbonate crash models, B4:11
Indonesian Throughflow, carbonate crash models, B4:11
Intergrowths, granophyric
groundmass, A3:57–59
photograph, A3:208
photomicrograph, A3:182, 209–210, 222
Intergrowths, photograph, A3:242
Intermediate water, carbonate crash models, B4:10–12
Intertropical Convergence Zone, carbonate crash, B4:3
Iron
basement secondary mineral geochemistry, B8:3
hyaloclastite, A3:70
Intensive low-temperature hydrothermal alteration, A3:71
sediments, A3:42
shipboard vs. shore-based digestion, B3:14
shore-based flux vs. shore-based microwave acid digestion, B3:12–13
vs. depth, B3:15
Iron/aluminum ratio, sediments, A3:43
Iron/calcium ratio
veins, B10:3–6
vs. strontium/calcium ratio, B10:5
Iron/titanium oxide, photograph, A3:189, 192–193
re-crystallized basalts, A3:60–61
textures, A1:29–30; B5:1–32
Iron/titanium ratio, vs. depth, A3:248–249
Iron oxide
basement secondary mineral geochemistry, B8:2–3
lithologic units, A1:23
Phyllosilicates, B7:2–3
titanium hydrogarnet, B9:2–6
vs. depth, A1:81; A3:152, 194, 255
vs. magnesium oxide, A1:88; A3:199
Iron oxide veins, vs. depth, A3:248–249
Iron oxyhydroxide
alteration, A3:66
basement secondary mineral geochemistry, B8:3
Intensive low-temperature hydrothermal alteration, A3:71
photograph, A3:224, 231–232, 237, 244
replacement, B7:3
veins, A3:72
Isochrons, magnetic anomalies, A1:47; A3:109

J
joints
basalts, A3:78
reorientation, B11:14–26

L
laminations, basalts, A3:74
lanthanum. See also barium/lanthanum ratio
lanthanum/samarium ratio
basement, B6:4
vs. depth, B6:7
lava flows, massive ponded, lithologic units, A1:27–28
lava flows, recrystallized aphanitic
photograph, A3:184, 242
photomicrograph, A3:185
lava ponds
alteration, A3:66–73; B1:6–7
grain size vs. depth, A3:61–63
photograph, A1:74; A3:165–167
photomicrograph, A3:189, 192–193
re-crystallized basalts, A3:60–61
textures, A1:29–30; B5:1–32
lead
lava, B1:7
vs. depth, B6:6
lightness. See chromaticity
lithium
pore water, A3:40
vs. depth, A3:149
lithium/calcium ratio
pore water, A3:40
vs. depth, A1:68; A3:150
lithium/magnesium ratio
pore water, A3:40
vs. depth, A1:68; A3:150
lithologic units
igneous rocks, A1:26–28; A3:367; B1:15
sedimentary overburden, A3:22–26, 338
summary, A1:22–23, 111
Unit I, A3:22–24
Unit II, A3:24–26
lithology, prediction based on near-infrared spectroscopy, A3:365
lithostratigraphy
sedimentary overburden, A3:22–26
vs. depth, A1:58–59
loss on ignition
lava, A3:65
vs. magnesium oxide, A1:89; A3:200

M
magnesium
hyaloclastite, A3:70
Intensive low-temperature hydrothermal alteration, A3:71
pore water, A3:39–40
sediments, A3:42
shipboard vs. shore-based digestion, B3:14
shore-based flux vs. shore-based microwave acid digestion, B3:12–13
vs. depth, A3:149; B3:15
See also lithium/magnesium ratio; potassium/magnesium ratio
magnesium/calcium ratio
pore water, A3:39
veins, B10:2–6
vs. depth, A1:68; A3:150
vs. strontium/calcium ratio, B10:5
magnesium number
lava, A3:65; B1:6; B5:6
vs. depth, A1:85; A3:65, 198
magnesium number, clinopyroxene
vs. aluminum oxide, B5:25
magnesium oxide
basement secondary mineral geochemistry, B8:2–3
phyllosilicates, B7:2–3
vs. depth, A1:82; A3:152, 195
vs. major oxides, A1:88; A3:199
vs. trace elements, A1:89; A3:200
magnetic anomalies
isochrons, A1:47; A3:109; A4:8
profile maps, A4:12, 24, 36, 48
magnetic declination
principal component analysis, A3:135
magnetic field logs
magnetic field, A3:96–97
vs. depth, A3:324
magnetic inclination
basalts, A1:34; A3:84–85
demagnetization, A3:291–299
magnetic subdivisions, A3:331
vs. depth, A3:132, 142, 302–303
magnetic intensity
sediments, A3:30
split cores, A3:32–33
vs. depth, A3:126, 132, 142, 302–303
magnetic quality index, vs. depth, A3:307
magnetic subdivisions, magnetic inclination, A3:331
magnetic susceptibility
basalts, A3:89
sediments, A3:30–32, 48–49
vs. depth, A3:121–122, 126, 130–131, 156, 302, 312–313; B13:8–10
magnetic susceptibility, loop, vs. depth, A3:130–131
magnetic susceptibility, point, vs. depth, A3:130–131
magnetite
alteration, A3:66
basalts, A1:29
grain size variations of groundmass crystals, B5:22–23
groundmass, A3:57–59
lava ponds, B5:2–3
magmatic veins, A3:63–64
photograph, A3:243
recrystallized basalts, A3:60
rock magnetism, A3:33–34
magnetite, equigranular, photomicrograph, A3:189
magnetite groundmass, grain size vs. depth, A3:190
magnetostratigraphy
datums, A3:35
summary, A1:24, 113; A3:355
vs. depth, A1:60–63; A3:142–145
major elements
basement secondary mineral geochemistry, B8:5–16
sediments, A3:42–43
vs. depth, B3:15
major oxides
basalts, A3:375–382
vs. magnesium oxide, A1:88
manganese
basement secondary mineral geochemistry, B8:3
shipboard vs. shore-based digestion, B3:14
shore-based flux vs. shore-based microwave acid digestion, B3:12–13
vs. depth, A3:149; B3:15
manganese/calcium ratio
veins, B10:3–6
vs. strontium/calcium ratio, B10:5
manganese oxide
veins, A3:81; A3:149, 194; B3:15
vs. magnesium oxide, A1:88
marcasite, halos, A3:68
mass accumulation rates
carbonate crash, B4:1–24
carbonates, B2:9–10
sediments, A3:43–46
vs. age, A3:153; B2:22; B4:21
See also sedimentation rates
mass accumulation rates, bulk sediments, vs. age, B4:22
mass accumulation rates, carbonate
vs. age, B4:22
vs. carbon isotopes, B4:21
mass accumulation rates, organic carbon, vs. age, B4:22
mass accumulation rates, terrigenous, vs. age, B4:22
mass accumulation rates, volcanic ash, vs. age, B4:23
Matuyama Chron. See Brunhes/Matuyama boundary
mesostasis, groundmass, A3:58
metals
mass accumulation rates, A3:45
mass accumulation rates vs. age, A3:153
mica, lithologic units, A3:25
microbial activity
alteration textures, A3:86–87
microbiology
basalts, A1:34–35; A3:85–97
basement, A3:85–87
microcataclasite, basalts, A3:78
microcracks, photomicrograph, A3:260, 269
microcrystalline texture, photograph, A1:73; A3:164, 174
microfaults
basalts, A3:78
photomicrograph, A3:281
reorientation, B11:14–26
microlites
groundmass, A3:59
replacement, B7:3
microspheres, basalts, A3:391
microstructures, basalts, A3:73–74
mineral chemistry, lava ponds, B5:6
mineral composition, basalts, B3:24, 29–32
Miocene
 carbonate compensation depth, A1:24–25
carbonate crash, A1:24
nannofossil biostratigraphy, A3:27–29; B2:6–8
Miocene, middle, lithologic units, A3:24–26
Miocene, middle–upper, carbonate crash, B1:4–5; B4:1–24
Miocene, middle/upper boundary, nannofossil biostratigraphy, A3:28
Miocene, upper, lithologic units, A3:22–26
Miocene/Pliocene boundary, nannofossil biostratigraphy, B2:6
mixed-layer minerals
 basement secondary mineral geochemistry, B8:3
See also chlorite-smectite mixed-layer minerals

N
nannofossil datums
 age and depth and zonation, B2:25
correlation with sedimentation, B2:23
nannofossils
 diagenesis, B4:6–7
 vs. depth, A3:123
nannofossils, calcareous
 biostratigraphy, A1:23–24; A3:26–29
datums, A1:112; A3:340
distribution, A3:342–343; B2:24
 Neogene datum age vs. depth, A1:64
 upper Cenozoic biostratigraphy, B2:1–25
Nazca plate. See Cocos/Nazca/Pacific triple junction
Neogene, nannofossil datum age vs. depth, A1:64
nickel
 hyaloclastite, A3:70
 intensive low-temperature hydrothermal alteration, A3:71
 shore-based flux vs. shore-based microwave acid digestion, B3:12–13
 vs. depth, A1:84; A3:197
 vs. magnesium oxide, A1:89; A3:200
niobium
 vs. depth, A1:83; A3:196; B6:6
 vs. magnesium oxide, A1:89; A3:200
 vs. zirconium, A1:87; A3:202
niobium–zirconium–yttrium ternary diagram, basalts, A1:86; A3:201
nitrogen, alteration, B1:8
nitrogen isotopes, alteration, B1:8
nODULES, chert, lithologic units, A3:25–26
nODULES, lithologic units, A1:23
nontronite, halos, A3:68
North Atlantic Deep Water, carbonate compensation depth, B2:10

O
ocean currents, carbonate crash models, B4:10–12

Ocean Drilling Program, in situ basement drilling, A1:3–6
oligoclase, replacement, B7:3
olivine, basalts, A1:28–30; A3:56
olivine phenocrysts, basalts, A1:79; A3:56
olivine replacement, photomicrograph, A3:205–206, 214, 226
ooze, calcareous nannofossil, lithologic units, A3:24–26
ooze, clayey nannofossil, lithologic units, A3:23–24
ooze, sandy silty nannofossil, lithologic units, A3:23–24
opal
 photomicrograph, A3:253–254
 visible and near-infrared spectroscopy, A3:49
opal, predicted, vs. depth, A3:158
organic matter, sediments, A1:25–26
oxidation halos, photograph, A3:251
oxygen isotopes
 carbonate crash, B4:5–6
 vs. age, B4:21
 vs. carbon isotopes, B4:21

P
Pacific-Cocos Ridge, seafloor spreading, A1:10
Pacific Ocean E equatorial
 biostratigraphy, B2:1–25
 middle/late Miocene carbonate crash, B4:1–24
 upper oceanic crust, B1:1–15
Pacific plate
 age map, B1:12
 See also Cocos/Nazca/Pacific triple junction; Cocos/Pacific plate boundary
paleoceanography, carbonate crash, B4:1–24
paleoclimatology, carbonate crash, B4:1–24
paleomagnetism
 basalts, A1:33–34
 basement, A3:80–85
 discrete samples, A3:350–351, 384
 drilling disturbed intervals, A3:344
 igneous rocks, A3:385–387, 389
 principal component analysis, A3:349
 sedimentary overburden, A3:29–35
 split cores, A3:32–33
 summary, A1:24
 whole-round experiment, A3:83–84
 working-half measurements, A3:81–82
Panama Gateway
 carbonate compensation depth, B2:10
 carbonate crash models, B4:8–10
 particulate tracers, microbial activity, A3:86
 perfluorocarbon tracers
 gas chromatograms, A3:308
 microbial activity, A3:86
Peru-Chile Current, carbonate crash, B4:3
petrography
 basalts, A3:55–64
 lithologic units, A1:28–30
pH
 pore water, A3:37–38
 vs. depth, A3:147
phenocrysts
basalts, A1:28–30; A3:55–56; B5:5–6
modal abundance, A1:78; A3:175–176
photomicrograph, A3:177–179
vs. depth, A1:71–72; A3:162–163
See also clinopyroxene phenocrysts; olivine phenocrysts; plagioclase phenocrysts
phosphate, pore water, A3:38
phosphorus
intensive low-temperature hydrothermal alteration, A3:71
shore-based flux vs. shore-based microwave acid digestion, B3:12–13
phosphorus oxide
vs. depth, A1:82; A3:195
vs. magnesium oxide, A1:88; A3:199
photoelectric effect logs, vs. depth, A3:322
phylllosilicates
basement secondary mineral geochemistry, B8:1–16
graphite, B7:2–3
photograph, A3:234
phylllosilicates, celadonic, geochemistry, B7:2–3, 5–11
phylllosilicates, saponitic, geochemistry, B7:2–3, 11
physical properties
basalts, A1:34; A3:388
basement, A3:87–90
lava, B1:8–9
sedimentary overburden, A3:46–49
summary, A1:26
upper oceanic crust, B13:1–11
phytoplankton, carbonate crash models, B4:8–10
pigeonite
groundmass, A3:57–59
photomicrograph, A3:182
pigeonite, prismatic, photomicrograph, A3:182
pillow basalts, photograph, A3:169
pillow lava, lithologic units, A3:54; B1:6–9
plagioclase
basalts, A1:28–30
deformation, A3:73–74
grain size variations of groundmass crystals, B5:22–23
grain size vs. depth, A3:61–63, 187–188; B5:9–10
groundmass, A3:57–59
lava ponds, B5:3
magmatic veins, A3:63–64
photomicrograph, A3:281; B5:17
recrystallized basalts, A3:60; B5:8
See also albite; anorthite
plagioclase, sodic, photomicrograph, A3:182
plagioclase crystals, photomicrograph, A3:260
plagioclase glomerocrystals, photomicrograph, A3:216
plagioclase groundmass, grain size vs. depth, A3:191
plagioclase laths, photomicrograph, A3:177–178, 180, 189, 259; B5:17, 19, 21
plagioclase phenocrysts
basalts, A1:79; A3:56–57
photomicrograph, A1:80; A3:215
plagioclase phenocrysts, zoned, photomicrograph, A3:178
plagioclase replacement, photomicrograph, A3:211, 215–216, 245
Planolites, lithologic units, A3:23–26
plate tectonics, crust, A1:10–11
Pliocene
lithologic units, A3:22–24
See also Pliocene/Pleistocene boundary
Pliocene
lithologic units, A3:22–24
nannofossil biostratigraphy, A3:27–29; B2:5–6
See also Miocene/Pliocene boundary
Pliocene/Pleistocene boundary
lithologic units, A3:23
nannofossil biostratigraphy, B2:5
pore water, geochemistry, A3:36–41, 357–360
porosity
basalts, A3:88
sediments, A3:47–48
vs. bulk density, A3:315; B13:7
vs. compressional wave velocity, A3:157
vs. depth, A1:69; A3:155, 310–311, 392–394
vs. velocity, A3:48, 316
well-logging, A3:52
porosity logs, vs. depth, A3:161, 322
potassium
hyaloclastite, A3:70
intensive low-temperature hydrothermal alteration, A3:71
pore water, A3:40
sediments, A3:42
shipboard vs. shore-based digestion, B3:14
shore-based flux vs. shore-based microwave acid digestion, B3:12–13
vs. depth, A3:149; B3:15
potassium/calcium ratio
pore water, A3:40
vs. depth, A1:68; A3:150
potassium/magnesium ratio
pore water, A3:40
vs. depth, A1:68; A3:150
potassium/titanium ratio, vs. depth, A1:85; A3:198
potassium logs, vs. depth, A3:161, 323
potassium oxide
basement secondary mineral geochemistry, B8:2–3
lava, A3:65
phylllosilicates, B7:2–3
vs. depth, A1:82; A3:152, 195
vs. magnesium oxide, A1:88; A3:199
preferred orientation, photomicrograph, A3:259
productivity
carbonate crash, B4:1–24
mass accumulation rates, B2:9–10
vs. depth, A1:67; A3:154
productivity proxies, carbonates, B4:7–8
pull-aparts, sigmoidal
photograph, A3:268, 275
veins, A3:75–76
pyrite
alteration, A3:66–73
photograph, A3:208, 232, 243
photomicrograph, A3:205, 222, 227–228
veins, A3:71
pyrite fronts, halos, A3:69
pyroxene. See augite; clinopyroxene; pigeonite

Q
quartz
groundmass, A3:57–59
magmaic veins, A3:63–64
photograph, A3:208, 237
quartz, euhedral, photomicrograph, A3:209, 252
Quaternary, nannofossil biostratigraphy, A3:26–29; B2:4–5
quenched surfaces, lava ponds, B5:2–3

R
radioactivity, well-logging, A3:52
radiolarians, vs. depth, A3:123
rare earths, basement, B1:7; B6:3–4, 8
recrystallization
basalts, A3:59–64
core image, B5:11
folding, A3:75
lava ponds, B5:1–32
photograph, A1:74; A3:167, 242, 265
photomicrograph, A3:270; B5:12–15
textures, B5:12–15
reduction. See sulfate reduction
reflectance
lithologic units, A3:22–26
vs. depth, A3:121–122
vs. wavelength, B12:9
See also chromaticity
remanent magnetization, anhysteretic
discrete samples, A3:33, 352
Lowrie–Fuller tests, A3:141
remanent magnetization, characteristic
basalts, A3:84–85
discrete samples, A3:33
remanent magnetization, isothermal
discrete samples, A3:353
Lowrie–Fuller tests, A3:141
split cores, A3:32–33
remanent magnetization, natural
basalts, A3:84–85
split cores, A3:32–33
resistivity logs, vs. depth, A3:161, 322
reworking, nannofossils, B2:11–12
rock magnetism, titanomagnetite, A3:33–34
rubidium
lava, B1:7
vs. depth, B6:6

S
salinity
pore water, A3:37–38

samarium. See lanthanum/samarium ratio
sand
lithologic units, A3:23–26
vs. depth, A3:123
saponite
alteration, A3:66–73; B1:8; B7:1–16
basement secondary mineral geochemistry, B8:2–3, 11
photograph, A3:208, 213, 218–219, 224, 231–232, 237, 242, 284
veinlets, A3:78–79
veins, A1:32; A3:71
saponite fibers, overlapping, photograph, A3:277
saponite fibers, shear, photomicrograph, A3:280–281
scandium
shore-based flux vs. shore-based microwave acid digestion, B3:12–13
vs. depth, A1:84; A3:197; B6:6
vs. magnesium oxide, A1:89; A3:200
seafloor spreading
Cocos/Pacific plate boundary, A1:9–10; B1:1–15
depth to velocity inversion vs. spreading rate, A3:106; B1:13
sea level changes, carbonate crash models, B4:12–13
secondary minerals
alteration, A3:66–73
geochemistry, B7:1–16; B8:1–16
total volume in veins and breccia, A1:92
veins, A1:93
vs. depth, A1:91; A3:217, 248–249, 255
sedimentary overburden
biostratigraphy, A3:26–29
downhole measurements, A3:49–52
inorganic geochemistry, A3:36–41
lithostratigraphy, A3:22–26; B1:4–5
paleomagnetism, A3:29–35
physical properties, A3:46–49
preliminary results, A3:1–3
sediment geochemistry, A3:41–46
sedimentation rates, A3:35–36
Site 1256, A3:22–52
sedimentation, upper Cenozoic, B2:1–25
sedimentation rates
sedimentary overburden, A3:29, 35–36; B1:4–5
summary, A1:24–25; A3:146
vs. depth, A1:65; A3:146
See also mass accumulation rates
sedimentation rates, linear
biostratigraphy, B2:9–10
data, A3:356
sediments
geochemistry, A3:41–46; B3:1–26
summary, A1:22–23
X-ray diffraction data, A3:339
sediments, bulk
geochemistry, A3:361–364
vs. age, B4:22–23
Site 1256, B2:22
VOLUME 206 SUBJECT INDEX
sediiments, interflow • strontium/calcium ratio

 principal results, A1:22–36
 reconstruction of site, A1:48; A3:107
 reentry cone, A1:57
 secondary mineral chemistry, B7:1–16
 sediment geochemistry, B3:1–26
 sedimentary overburden, A3:22–52
 site description, A3:1–36
 structure reorientation, B11:1–26
 titanium hydrogarnets, B9:1–6
 upper Cenozoic nanofossil biostratigraphy, B2:1–25
 upper oceanic crust hydration, B12:1–13
 whole-core images, A1:35–36
 Site ALIJO, bathymetry, A1:52
 Site GUATB-01, bathymetry, A1:51
 Site GUATB-02, bathymetry, A1:50; A3:111
 Site GUATB-03
 bathymetry, A1:49; A3:110
 site survey results, Guatemala Basin, A1:11–13
 Skolithos, lithologic units, A3:23–26
 smear slide data, vs. depth, A3:123
 smectite
 basement secondary mineral geochemistry, B8:2–3
 spectroscopy, B12:1–13
 vs. depth, B12:12–13
 See also chlorite–smectite mixed-layer minerals
 smectite, predicted, vs. depth, A3:158
 sodium
 pore water, A3:37–38
 sediments, A3:42
 shipboard vs. shore-based digestion, B3:14
 shore-based flux vs. shore-based microwave acid digestion, B3:12–13
 vs. depth, A3:147; B3:15
 sodium/chloride ratio, vs. depth, A3:147
 sodium oxide
 vs. depth, A1:82; A3:152, 195
 vs. magnesium oxide, A1:88; A3:199
 South Equatorial Current, carbonate crash, B4:3
 spectroscopy, visible and near-infrared
 basalt, A3:90
 hydration indicator, B12:1–13
 sediments, A3:49; B1:5
 stable isotopes
 alteration, B1:8
 carbonate crash, B4:5–6
 stratigraphy, epoch boundaries, A3:341
 strontium
 lava, A3:65; B1:7
 pore water, A3:39–40
 shipboard vs. shore-based digestion, B3:14
 shore-based flux vs. shore-based microwave acid digestion, B3:12–13
 vs. depth, A1:83; A3:149, 152, 196; B3:15; B6:6
 vs. magnesium oxide, A1:89; A3:200
 strontium/calcium ratio
 pore water, A3:40
 sediments, A1:26; A3:150
 veins, B10:2–6
 vs. depth, A1:68
 vs. iron/calcium ratio, B10:5

 sediments, interflow
 alteration, A3:69
 photograph, A3:242–243
 vs. depth, A3:204, 233, 255
 seismic profiles, Site GUATB-03, A1:53–54
 seismic sections, multichannel, vs. two-way travel time, A4:14–21, 26–33, 38–45
 seismic surveys, Cruise EW9903, A4:1–49
 seismic tracks, multichannel, maps, A4:10, 34, 46
 shear bands, basalts, A3:76
 shear structures, basalts, A3:74–75
 sheet flows
 lithologic units, A1:27–28; A3:53
 photograph, A1:73, 75; A3:164, 168
 silica
 alteration, A3:66
 hyaloclastite, A3:70
 intensive low-temperature hydrothermal alteration, A3:71
 photograph, A3:218, 232, 242, 244
 photomicrograph, A3:279
 pore water, A3:39
 sediments, A3:42
 titanium hydrogarnet, B9:2–6
 vs. depth, A1:81; A3:148, 152, 194, 255
 vs. magnesium oxide, A1:88; A3:199
 silica, biogenic
 mass accumulation rates, A3:45
 mass accumulation rates vs. age, A3:153
 vs. age, B2:22
 vs. depth, A1:66; A3:151
 silicification, lithologic units, A1:23
 silicon
 shipboard vs. shore-based digestion, B3:14
 shore-based flux vs. shore-based microwave acid digestion, B3:12–13
 vs. depth, B3:15
 silt
 lithologic units, A3:23–26
 vs. depth, A3:123
 Site 998, carbonate and volcanic ash mass accumulation rates vs. age, B4:23
 Site 999, carbonate and volcanic ash mass accumulation rates vs. age, B4:23
 Site 1256, A3:1–396
 background and objectives, A3:5–9
 basement secondary mineral geochemistry, B8:1–16
 basement trace elements, B6:1–10
 bathymetry, A1:49–52
 calcium carbonate veins, B10:1–6
 coring summary, A1:108; A3:335
 downhole measurements, A1:35
 drilling summary, A1:1–117
 geology, A1:10–11
 lava pond textures, B5:1–32
 lithostatigraphy vs. depth, A1:58–59
 location, A1:56; A3:114
 physical properties of upper oceanic crust, B13:1–11
 preliminary results, A3:1–5

stick images, A1:35–36
 Site ALIJO, bathymetry, A1:52
 Site GUATB-01, bathymetry, A1:51
 Site GUATB-02, bathymetry, A1:50; A3:111
 Site GUATB-03
 bathymetry, A1:49; A3:110
 site survey results, Guatemala Basin, A1:11–13
 Skolithos, lithologic units, A3:23–26
 smear slide data, vs. depth, A3:123
 smectite
 basement secondary mineral geochemistry, B8:2–3
 spectroscopy, B12:1–13
 vs. depth, B12:12–13
 See also chlorite–smectite mixed-layer minerals
 smectite, predicted, vs. depth, A3:158
 sodium
 pore water, A3:37–38
 sediments, A3:42
 shipboard vs. shore-based digestion, B3:14
 shore-based flux vs. shore-based microwave acid digestion, B3:12–13
 vs. depth, A3:147; B3:15
 sodium/chloride ratio, vs. depth, A3:147
 sodium oxide
 vs. depth, A1:82; A3:152, 195
 vs. magnesium oxide, A1:88; A3:199
 South Equatorial Current, carbonate crash, B4:3
 spectroscopy, visible and near-infrared
 basalt, A3:90
 hydration indicator, B12:1–13
 sediments, A3:49; B1:5
 stable isotopes
 alteration, B1:8
 carbonate crash, B4:5–6
 stratigraphy, epoch boundaries, A3:341
 strontium
 lava, A3:65; B1:7
 pore water, A3:39–40
 shipboard vs. shore-based digestion, B3:14
 shore-based flux vs. shore-based microwave acid digestion, B3:12–13
 vs. depth, A1:83; A3:149, 152, 196; B3:15; B6:6
 vs. magnesium oxide, A1:89; A3:200
 strontium/calcium ratio
 pore water, A3:40
 sediments, A1:26; A3:150
 veins, B10:2–6
 vs. depth, A1:68
 vs. iron/calcium ratio, B10:5
vs. magnesium/calcium ratio, B10:5
vs. manganese/calcium ratio, B10:5
strontium isotopes, veins, B10:3–6
structural geology, basement, A3:73–80

structures
 dip, A3:287, 289
 orientation, A3:80
 reorientation, B11:1–26
 rose diagrams, A1:98; A3:288, 290
 veins, A1:32–33
 vs. depth, A1:96–97; A3:257–258

structures, brittle-ductile, photomicrograph, A3:264
structures, ductile, photomicrograph, A3:264
structures, wrinklelike, photograph, A3:272

sulfate
 pore water, A3:38
 sediments, A1:25–26
 vs. depth, A3:148

sulfate reduction, pore water, A3:38
sulfides, photomicrograph, A3:279

T

tantalum, vs. depth, B6:6
temperature
 downhole measurements, A3:49–50
 vs. depth, A1:70; A3:160
tension gashes
 photograph, A3:267
 photomicrograph, A3:280
 veins, A3:75–76
terrigenous material
 mass accumulation rates, A3:44
 mass accumulation rates vs. age, A3:153
 vs. age, B2:22; B4:22–23
 vs. depth, A1:66; A3:151

textures
 basalts, B5:1–32
 groundmass, A3:58–59
 recrystallization, B5:12–15

textures, cryptocrystalline
 photograph, A1:73, 77; A3:164, 174
 photomicrograph, A3:259
 recrystallized basalts, A3:60–61

textures, euhedral, basalts, A1:28–30

textures, fibrous, lava ponds, B5:3

textures, granophyric
 photograph, A3:208
 photomicrograph, A3:182, 209–210, 222

textures, holohyaline, recrystallized basalts, A3:60–61

textures, ophitic, photomicrograph, A3:178

textures, plagioclase, groundmass, A3:58–59; B5:8

textures, poikilitic, photomicrograph, A3:183

textures, soggy phone book, photograph, A3:127

textures, variolitic
 groundmass, A3:58–59
 lava ponds, B5:2–3
 photomicrograph, A3:180–181; B5:8

thermal conductivity
 basalts, A3:89
 sediments, A3:49

T

tantalum, vs. depth, B6:6
temperature
 downhole measurements, A3:49–50
 vs. depth, A1:70; A3:160
tension gashes
 photograph, A3:267
 photomicrograph, A3:280
 veins, A3:75–76
terrigenous material
 mass accumulation rates, A3:44
 mass accumulation rates vs. age, A3:153
 vs. age, B2:22; B4:22–23
 vs. depth, A1:66; A3:151

T

tantalum, vs. depth, B6:6
temperature
 downhole measurements, A3:49–50
 vs. depth, A1:70; A3:160
tension gashes
 photograph, A3:267
 photomicrograph, A3:280
 veins, A3:75–76
terrigenous material
 mass accumulation rates, A3:44
 mass accumulation rates vs. age, A3:153
 vs. age, B2:22; B4:22–23
 vs. depth, A1:66; A3:151

T

tantalum, vs. depth, B6:6
temperature
 downhole measurements, A3:49–50
 vs. depth, A1:70; A3:160
photograph, A3:272
photomicrograph, A3:266, 269
saponite, A3:78–79
veins
alteration halos, A3:218
microbial alteration textures, A3:86–87
reorientation, B11:14–26
secondary minerals, A1:93
structures, A1:32–33; A3:75–76
types and geometry, A3:76–78
vs. depth, A3:204, 248–249
veins, carbonate
composition, A1:31–32; A3:72
geochemistry, B10:1–6
vs. depth, A3:248–249
veins, celadonite
composition, A3:71–72
photograph, A3:251
vs. depth, A3:248–249
veins, composite, photomicrograph, A3:278–280
veins, conjugate set
photograph, A3:276
types and geometry, A3:77
veins, fibrous, types and geometry, A3:77–78
veins, iron oxyhydroxide
composition, A3:72
photograph, A3:251
veins, late magmatic
basalts, A3:63–64; B5:5–6
photograph, A3:208
photomicrograph, A3:192–193, 222
veins, pyrite
composition, A3:72
photomicrograph, A3:250
vs. depth, A3:248–249, 255
veins, saponite
composition, A3:71
photograph, A3:252
photomicrograph, A3:253–254
vs. depth, A3:248–249, 255
veins, secondary minerals, vs. depth, A1:94
veins, shear
photograph, A3:277
reorientation, B11:14–26
veins, silica
composition, A3:72
photograph, A3:252
photomicrograph, A3:253–254
vs. depth, A3:248–249
veins, stepped, photograph, A3:275
velocity
vs. bulk density, A3:314
vs. depth, A1:55; A3:310–311, 392–394
vs. porosity, A3:48, 316
See also compressional wave velocity
velocity, horizontal, vs. vertical velocity, A3:317
velocity, one-dimensional model, inversion of refraction
data, A1:55
velocity, vertical, vs. horizontal velocity, A3:317
vesicles
photograph, A1:75; A3:168–169
photomicrograph, A3:206, 214, 226, 230, 262, 269
vesicles, flattened, basalts, A3:74
vesicles, pipe, photograph, A3:169
volcanic ash
lithologic units, A3:23–26
vs. age, B4:23
volcanic ash layers, photograph, A3:124
volcanic glass
alteration, A3:67
groundmass, A3:57–59
microbial alteration textures, A3:86
photomicrograph, A3:240
See also glass shards; glassy margins
volcanic glass, altered, photograph, A1:77
volcaniclastics
lithologic units, A3:54–55
photograph, A1:77; A3:172
volcanism, stratigraphy, B1:8–9
vugs
photograph, A3:218, 252
photomicrograph, A3:246–247
W
water content
sediments, A3:392–394
spectroscopy, B12:10
well-log Interval 1, basalts, A3:95
well-log Interval 2, basalts, A3:95–96
well-log Interval 3, basalts, A3:96
well-logging
basalts, A3:93–97
operations, A3:321, 396
vs. depth, A1:101
X
X-ray diffraction data, sediments, A3:339, 383
Y
yttrium
vs. depth, A1:83; A3:152, 196; B6:6
vs. magnesium oxide, A1:89; A3:200
See also niobium–zirconium–yttrium ternary diagram;
zirconium/yttrium ratio
Z
zirconium
basalts, A1:30–31
lava, A3:65
shore-based flux vs. shore-based microwave acid di-
gestion, B3:12–13
vs. depth, A1:83; A3:64–65, 196; B6:6
zirconium (continued) • rotaria, Reticulofenestra, Site 1256

vs. magnesium oxide, A1:89; A3:200
vs. niobium, A1:87; A3:202
vs. titanium oxide, A1:87; A3:65, 202
See also niobium–zirconium–yttrium ternary diagram
zirconium/titanium ratio
lava, A3:65
vs. depth, A1:85; A3:198
Zoophycos
lithologic units, A3:24–26
photograph, A3:125

zirconium/yttrium ratio
basement, B6:3
lava, A3:65
vs. depth, A1:85; A3:198; B6:7

TAXONOMIC INDEX

A
abies/neoabies group, Sphenolithus, Site 1256, A3:28; B2:6
abisectus, Cyclicargolithus, Site 1256, B2:11
acutus, Ceratolithus, Site 1256, B2:6
Amaurolithus amplificus, Site 1256, B2:7
Amaurolithus primus, Site 1256, A3:28; B2:6–7
Amaurolithus spp., Site 1256, A3:28
Amaurolithus tricorniculatus, Site 1256, B2:6
ampliaperta, Helicosphaera, Site 1256, A3:28; B2:8
amplificus, Amaurolithus, Site 1256, B2:7
asymmetricus, Discoaster, Site 1256, B2:6

B
berggrenii, Discoaster, Site 1256, A3:28; B2:7, 11
bollii, Discoaster, Site 1256, B2:11
brouweri, Discoaster, Site 1256, A3:28; B2:4–5

C
Calcidiscus macintyrei, Site 1256, B2:4
Calcidiscus spp., Site 1256, A3:27; B2:4–5
caribbeanica, Gephyrocapsa, Site 1256, B2:4
Catinaster coalitus, Site 1256, A3:28; B2:7–8
Ceratolithus acutus, Site 1256, B2:6
ceratolithus rugosus, Site 1256, B2:5–6
coalitus, Catinaster, Site 1256, A3:28; B2:7–8
Coccolithus miopelagicus, Site 1256, B2:8
Coccolithus spp., Site 1256, A3:27
Cyclicargolithus abisectus, Site 1256, B2:11
Cyclicargolithus floridanus, Site 1256, A3:28; B2:8

D
Discoaster asymmetricus, Site 1256, B2:6
Discoaster berggrenii, Site 1256, A3:28; B2:7, 11
Discoaster bollii, Site 1256, B2:11
Discoaster brouweri, Site 1256, A3:28; B2:4–5
Discoaster hamatus, Site 1256, A3:28; B2:7–8, 11
Discoaster kugleri, Site 1256, A3:28; B2:8
Discoaster neohamatus, Site 1256, B2:7
Discoaster neorectus, Site 1256, B2:7
Discoaster pentaradiatus, Site 1256, A3:28; B2:5
Discoaster quinqueramus, Site 1256, A3:28; B2:6–7, 11
Discoaster sanuaeulensis, Site 1256, A3:28; B2:8
Discoaster spp., Site 1256, B1:4
Discoaster surculus, Site 1256, A3:28; B2:5

E
Emiliania huxleyi, Site 1256, A3:26–27; B2:4

F
floridanus, Cyclicargolithus, Site 1256, A3:28; B2:8

G
Gephyrocapsa caribbeanica, Site 1256, B2:4
Gephyrocapsa spp., Site 1256, A3:26–27; B1:4; B2:4

H
hamatus, Discoaster, Site 1256, A3:28; B2:7–8, 11
Helicosphaera ampliaperta, Site 1256, A3:28; B2:8
Helicosphaera sellii, Site 1256, B2:4
heteromorphus, Sphenolithus, Site 1256, A3:28; B2:8
huxleyi, Emiliania, Site 1256, A3:26–27; B2:4

K
kugleri, Discoaster, Site 1256, A3:28; B2:8

L
lacunosa, Pseudoemiliania, Site 1256, A3:27; B2:4

M
macintyrei, Calcidiscus, Site 1256, B2:4
miopelagicus, Coccolithus, Site 1256, B2:8
moriformis, Sphenolithus, Site 1256, B2:11

N
neohamatus, Discoaster, Site 1256, B2:7
neorectus, Discoaster, Site 1256, B2:7

P
pentaradiatus, Discoaster, Site 1256, A3:28; B2:5
primus, Amaurolithus, Site 1256, A3:28; B2:6–7
Pseudoemiliania lacunosa, Site 1256, A3:27; B2:4
pseudoumbilica, Reticulofenestra, Site 1256, A3:28; B2:5, 8

Q
quinqueramus, Discoaster, Site 1256, A3:28; B2:6–7, 11

R
Reticulofenestra pseudoumbilica, Site 1256, A3:28; B2:5, 8
Reticulofenestra rotaria, Site 1256, B2:7, 12
Reticulofenestra spp., Site 1256, B2:4
rotaria, Reticulofenestra, Site 1256, B2:7, 12
VOLUME 206 TAXONOMIC INDEX

rugosus, Ceratolithus, Site 1256 • zones (with letter prefixes)

rugosus, Ceratolithus, Site 1256, B2:5–6

S

Sanmiguelensis, Discoaster, Site 1256, A3:28; B2:8

Sellii, Helicosphaera, Site 1256, B2:4

Sphenolithus abies/neoabies group, Site 1256, A3:28; B2:6

Sphenolithus heteromorphus, Site 1256, A3:28; B2:8

Sphenolithus moriformis, Site 1256, B2:11

Sphenolithus spp., Site 1256, A3:27; B1:4

Surculus, Discoaster, Site 1256, A3:28; B2:5

T

Tricorniculatus, Amaurolithus, Site 1256, B2:6

Z

zones (with letter prefixes)

CN10a, Site 1256, B2:6

NN4, Site 1256, A3:28

NN5, Site 1256, A3:27–28; B2:8

NN6, Site 1256, A3:28; B2:8

NN7, Site 1256, A3:28; B2:8

NN8, Site 1256, A3:28; B2:8

NN9, Site 1256, A3:28; B2:7

NN10, Site 1256, A3:28; B2:7

NN11, Site 1256, A3:28; B2:7, 11

NN11a, Site 1256, A3:28

NN11b, Site 1256, A3:28

NN12, Site 1256, B2:6

NN14/NN13 boundary, Site 1256, A3:28; B2:6

NN15, Site 1256, B2:6

NN16, Site 1256, A3:28; B2:5–6

NN17, Site 1256, A3:28; B2:5

NN18, Site 1256, A3:28; B2:5

NN18–NN17 interval, Site 1256, B2:5

NN19, Site 1256, A3:27; B2:4

NN19–NN18 interval, Site 1256, B2:5

NN20, Site 1256, A3:27; B2:4

NN21, Site 1256, A3:26–27; B2:4