INDEX TO VOLUME 210

This index covers both the Initial Reports and Scientific Results portions of Volume 210 of the Proceedings of the Ocean Drilling Program. References to page numbers in the Initial Reports are preceded by “A” followed by the chapter number with a colon (A1:) and to those in the Scientific Results (this volume) by “B” followed by the chapter number with a colon (B1:).

The index was prepared by Earth Systems, under subcontract to the Ocean Drilling Program. The index contains two hierarchies of entries: (1) a main entry, defined as a keyword or concept followed by a reference to the page on which that word or concept appears, and (2) a subentry, defined as an elaboration on the main entry followed by a page reference.

The index covers volume text, figures, and tables but not core-description forms (“barrel sheets”), core photographs, smear slide data, or thin section descriptions. Also excluded from the index are bibliographic references, names of individuals, and routine front matter.

The Subject Index follows a standard format. Geographical, geologic, and other terms are referenced only if they are subjects of discussion. A site chapter in the Initial Reports is considered the principal reference for that site and is indicated on the first line of the site’s listing in the index. Such a reference to Site 1276, for example, is given as “Site 1276, A3:1–358.”

The Taxonomic Index is an index relating to significant findings and/or substantive discussions, not of species names per se. This index covers three varieties of information: (1) individual genera and species that have been erected or emended formally, (2) biostratigraphic zones, and (3) fossils depicted in illustrations. A taxonomic entry consisting of both genus and species is listed alphabetically by genus and also by species. Biostratigraphic zones are listed alphabetically by genus; zones with letter prefixes are listed under “zones.”

SUBJECT INDEX

A
abyssal regions, ocean circulation, A1:32
Acadian Orogeny, muscovite, B4:4
accretion, continental crust, B1:5
acoustic Unit 1, seismic profiles, A1:26
acoustic Unit 2
  comparison at Site 1276 and Site 398, A1:28
  seismic profiles, A1:26
acoustic Unit 3
  comparison at Site 1276 and Site 398, A1:27
  seismic profiles, A1:26
acoustic Unit 4
  comparison at Site 1276 and Site 398, A1:27
  isopach maps, Iberia margin, A1:55
Africa plate. See Iberia/Africa plate boundary
age vs. depth
  models, A1:16
  Site 398, A1:76
  Site 1276, A1:70, 76; A3:266; B11:4, 7, 9; B13:47
Albian
  biostratigraphy, A3:79, 84, 88; B13:6–9, 19–20
  lithologic units, A1:15; A3:44–50
  muscovite, B4:4
  nannofossil biostratigraphy, B11:1–9
  paleoenvironment, A1:17; B13:19–20
  paleoflow directions, B3:1–27
  postrift sedimentation, B1:27–28
  quartz-feldspar-lithic fragments system, B2:25
  quartz-potassium feldspar-plagioclase system histograms, B2:29
  sandstone and grainstone, B2:1–47
  sedimentation rates, A3:90
  sedimentology, B8:5–7
  unconformities, B1:13
  See also Aptian/Albian boundary
Albian, lower
  biostratigraphy, A3:80, 86
  clasts, B4:6–7
  comparison at Site 1276 and Site 398, A1:27
  mica, B4:6–7
  rifting phases, B1:11–14
Albian, lower-middle, paleoenvironment, B13:19–20
Albian, middle, biostratigraphy, A3:79, 83, 87; B13:8–9
Albian, upper, biostratigraphy, A3:79, 82
Albian/Cenomanian boundary, biostratigraphy, A3:79, 82, 87
alkali feldspar
  hydrothermal alteration, A3:56–57
  lithologic units, A3:28, 33
porphyroblasts, A3:239
Alleghanian Orogeny, muscovite, B4:4
allochems, photograph, A3:131
Alps, lithology compared with Newfoundland Basin, B9:23–25
alteration
  basalt flows, B9:14–15
  lithologic units, A4:6–8
  photomicrograph, A3:175
See also hydrothermal alteration
alteration, thermal
  Rock-Eval pyrolysis, A3:97
  sills, B1:23
aluminum
  basalt flows, B9:16
  black shale, B10:5
  lithologic units, A3:54, 98
  vs. depth, A3:280
See also barium/aluminum ratio; chromium/aluminum ratio; major elements/aluminum ratio; minor elements/aluminum ratio; trace elements/aluminum ratio; vanadium/aluminum ratio
aluminum oxide
  Albain–Turonian sedimentology, B8:7
  black shale, B8:16
  fine-grained sediments, B8:14
  lithologic units, A3:29, 53–54
  middle–upper Eocene sedimentology, B8:13
  Turonian–uppermost Santonian sedimentology, B8:9
  upper Paleocene–middle Eocene sedimentology, B8:12
  vs. depth, B8:40
  vs. iron oxide, B8:30
  vs. magnesium oxide, B8:26
  vs. potassium oxide, B8:25, 34
  vs. silica, A3:251; B8:31
  vs. sodium oxide, B8:27
  vs. titanium oxide, B8:28, 33, 37, 39
amalgamated beds, lithologic units, A3:27
Anmodiscidae
  biostratigraphy, A1:23
  lithologic units, A4:8
analcime, sill zoning, A3:67
anisotropy. See velocity anisotropy
Anomaly M0
  crust, B1:15–16
  extension rates, B1:20
  rift systems, A1:5–6
Anomaly M1, crust, B1:15–16
Anomaly M3
  crust, B1:16
  origin, A1:11
Anomaly M11, extension rates, B1:20
Anomaly M17
  rift systems, A1:5–6
  rifting phases, B1:8
Anomaly M20, rifting phases, B1:8
apatite, sill zoning, A3:67
Apennines, lithology compared with Newfoundland Basin, B9:23–25
apophysies, Lower Sill complex, A3:69
Aptian
  biostratigraphy, A3:81, 86; B13:6–8
  quartz-feldspar–lithic fragments system, B2:25
  quartz-potassium feldspar–plagioclase system histograms, B2:29
  synrift sedimentation, B1:26–27
Aptian, upper
  biostratigraphy, A3:80
  lithologic units, A3:39–57, 61–63
  rifting phases, B1:11–14
  sedimentation rates, A3:90
Aptian event, synrift sedimentation, B1:26–27
Aptian/Albian boundary
  comparison at Site 1276 and Site 398, A1:27
  subcontinental mantle lithosphere, B1:13
argon isotopes, muscovite, B4:1–13
Athy’s law, porosity and lithology automatic association with laboratory measurements, B7:4
Atlantic Ocean central N, stratigraphy compared with conjugate Iberia margin, A3:63–64
Atlantic Ocean N
  bathymetry, A1:39
  Cretaceous paleogeography, B3:18
  geology, A1:12–13
Atlantic Ocean western central N, compared with conjugate Iberia margin, A3:57–63
augite, photomicrograph, A3:247, 250
authigenesis
  lithologic units, A3:24
  photomicrograph, B2:24
Avalon Terrane
  continental crust, B1:5
  Cretaceous paleolatitude, B15:36
Avalon unconformity, rifting, B1:11
Avalon Uplift, provenance of gravity-flow deposits, B2:5–8
B
barium
  black shale, B8:16; B10:5
  fine-grained sediments, B8:15
  productivity, A3:98; B10:5
  vs. depth, B8:55
barium/aluminum ratio
  sediments, A3:98
  vs. depth, A3:280
Barremian
  quartz-potassium feldspar–plagioclase system histograms, B2:29
  rifting phases, B1:11–14
  sedimentation, A1:12; A3:64
  synrift sedimentation, B1:26–27
Barremian, lower
  rifting phases, B1:9–11
  synrift sedimentation, B1:25–26
Bartonian, biostratigraphy, A3:85–86
basalt flows
  geochemistry, B9:14–19, 32
lithologic units, A1:22; A4:4–6
photomicrograph, B9:54–55
basalt flows, massive, lithologic units, B9:8–9, 11–13
basalts
hafnium-thorium-tantalum system, B9:61
niobium-zirconium-yttrium system, B9:58
titanium-zirconium-yttrium system, B9:58, 61
trace elements, B9:58, 61
basalts, aphyric
photograph, A4:17
remanent magnetization, A1:23–24
basalts, brecciated massive, photograph, B9:50
basalts, fractured massive, photograph, B9:49–52
basalts, medium-grained brecciated, photograph, A4:18
basement
Cretaceous, A1:28–29; B9:33
magnetic anomalies, B1:17
rift systems, A1:5–6
SCREECH Transect 2, A5:6
seismic profiles, A1:26
seismic surveys, A4:11–12
basement, serpentinized, Iberia-Galicia margin compared with Newfoundland Basin, B9:20–21
basement, serpentinized ultramafic, lithologic units, B9:5–6
basement ridges, gabbros, A1:32–33
bastite, photograph, A4:14
Bathonian, rifting phases, B1:8
bathymetry, multibeam, SCREECH Transect 2, A5:1–36
bathymetry, Newfoundland margin, A1:47; A3:22–25
photograph, A1:69; A3:193
Blake Ridge Formation, lithologic units, A1:15, 17; A3:63
Blake-Bahama Formation, synrift sedimentation, B1:25–27
Bonarelli event
critical events, A1:18–19; B1:27
postrift sedimentation, B1:27
boreal taxa, paleoenvironment, A1:17
boreholes. See seismic-borehole correlation
breccia
hydrothermal alteration, A3:57
lithologic units, A1:22; A4:5–6
synrift sedimentation, B1:26–27
breccia, basaltic, lithologic units, B9:11–13
breccia, gabbro, lithologic units, B9:5–6
breccia, peridotite, Iberia-Galicia margin compared with Newfoundland margin, B9:20–21
breccia, polymict
lithologic units, A4:6; B9:7–8, 10–11
photomicrograph, B9:53
breccia, serpentinite, Iberia-Galicia margin compared with Newfoundland margin, B9:20
breccia, serpentinitized peridotite, Iberia-Galicia margin compared with Newfoundland margin, B9:21
breccia pipes, photograph, A3:254
brecciation, lithologic units, B9:8–9
bryozoans, photomicrograph, A3:151
burrow fills
photomicrograph, B2:20
X-ray imaging, B6:5
burrows
lithologic units, A3:22, 28, 32, 36–37, 41–58
photomicrograph, A3:233
burrows, elongated, photograph, A3:136
burrows, folded, photograph, A3:259
burrows, mud-filled, photograph, A3:130
cadmium, black shale, B8:16; B10:5
calc-siltite, ferruginous, photomicrograph, B9:53, 55
calcite
  hydrothermal alteration, A3:57
  lithologic units, A3:33, 37; A4:7
  Lower Sill complex, A3:69
  sill hydrothermal alteration, A3:68
  X-ray diffraction data, A3:237
calcite spar
  lithologic units, B9:8–9
  photograph, A3:172, 227, 236; A4:17–18
  calcite spar, “dogtooth,” lithologic units, A4:5
  calcite spar cement
    photograph, A3:196, 228–229; B9:49–52
    photomicrograph, B9:54–55
calciturbidites
  middle–upper Eocene sedimentology, B8:12–13
  upper Paleocene–middle Eocene sedimentology, A3:69
  vs. depth, B8:45
  vs. silica, A3:251
calcium, lithologic units, A3:54
calcium oxide
  Albian–Turonian sedimentology, B8:8
  middle–upper Eocene sedimentology, B8:13
  sills, A3:68
  vs. depth, B8:45
  vs. silica, A3:251
Callovian, rifting phases, B1:6–7
Campanian
  biostratigraphy, A3:81, 84, 87; B13:10–12
  comparison at Site 1276 and Site 398, A1:27
  paleoenvironment, B13:21–22
  postrift sedimentation, B1:29–31
  quartz-feldspar-lithic fragments system, B2:26
Campanian, lower
  lithologic units, A3:30–36, 60–61
  sedimentology, B8:10
Campanian, middle–lower Paleogene interval, nanno-
  fossil bioevents, B13:45
Campanian, upper
  biostratigraphy, A3:78
  remanent magnetization, A1:19
carbon, inorganic, sediments, A3:96, 345–348
carbon, organic
  black shale, B8:16–17; B10:3–4
  sediments, A3:349–355
carbon, total organic
  lithologic units, A3:54, 96; B10:11–13
  oceanic anoxic events, A3:97–98
  postrift sedimentation, B1:27–28
  Rock-Eval pyrolysis, A3:97
  vs. carbon/nitrogen ratio, B10:8
  vs. depth, A1:73; A3:278–281
  vs. nitrogen isotopes, B10:9
carbon isotopes, black shale, B10:11–13
carbonate cement, microcrystalline, photomicrograph, B2:22
carbonate cement, poikilotopic
  photomicrograph, B2:21
  provenance, B2:4–5
carbonate compensation depth
  biostratigraphy, A3:76–88; B13:19–25
  comparison at Site 1276 and Site 398, A1:27–28
  fine-grained sediments, B8:14
  lithologic units, A1:15, 17; A3:25, 29–30, 35–36, 43–
  44, 46, 49–50, 54–56, 62–64
  middle–upper Eocene sedimentology, B8:13
  postrift sedimentation, B1:31–32
  synrift sedimentation, B1:25
  carbonate content
    sediments, A3:29, 96, 345–348; B10:11–13
    upper Paleocene–middle Eocene sedimentology,
    B8:11–12
    vs. depth, A1:73; A3:279
    vs. velocity, A3:292
    vs. x-direction velocity, A3:293
  carbonate lenses, photograph, A3:234
carbonates
  deposition, A3:59–60
  photomicrograph, A3:175, 223
  rifting phases, B1:6–7
  synrift sedimentation, B1:25–27
carbonates, authigenic
  lithologic units, A3:24
  photomicrograph, A3:226
  carbonates, lower Campanian–upper Paleocene sedi-
  mentology, B8:10
carbonates, pelagic, deposition, A3:62
  carbonates, poikilotopic, photomicrograph, A3:206
  carbon/nitrogen ratio
    black shale, B8:16–17; B10:3–4
    vs. depth, A1:73; A3:277, 279
    vs. total organic carbon, B10:8
  Caribbean bioprovince, postrift sedimentation, B1:31
  Carnian, rifting phases, B1:6
  Carson Basin, rifting phases, B1:6
  cataclasites
    lithologic units, B9:11–13
    remanent magnetization, A1:23–24
  cataclasites, foliated, lithologic units, A4:7
  cataclasites, gabbro, lithologic units, A1:23
  cataclasites, sheared gabbro, photomicrograph, B9:54
  cementation
    lithologic units, A3:29, 48, 50–52
    photograph, A3:235
    X-ray imaging, B6:5
  Cenomanian
    biostratigraphy, A3:81, 86; B13:8–10
    comparison at Site 1276 and Site 398, A1:27
    lithologic units, A3:41–58
    paleoenvironment, B13:20–21
    postrift sedimentation, B1:27–28
    quartz-feldspar-lithic fragments system, B2:26
    quartz-potassium feldspar-plagioclase system histo-
    grams, B2:29
  See also Albain/Cenomanian boundary; mid-Ceno-
  manian Event
  Cenomanian, upper, sedimentation, A3:63–64
Cenomanian/Turonian boundary
biostratigraphy, A3:79
lithologic units, A3:39
postrift sedimentation, B1:28–31
Cenomanian–Turonian interval, nanofossil bioevents, B13:44
Cenozoic, lower, diagenesis, B8:1–63
Cenozoic, nanofossils, A3:332–334
Central Iberian Zone, rifting phases, B1:6
cerium
basalt flows, B9:16–17
fine-grained sediments, B8:15
lower Cenomanian–Turonian biostratigraphy, A3:79
lithologic units, A3:39
postrift sedimentation, B1:28–31
cenozoic, lower, diagenesis, B8:1–63
cenozoic, nanofossils, A3:332–334
central iborian zone, rifting phases, B1:6
chilled contacts, relation to Lower Sill complex, A3:69–70
chilled margins
lithologic units, A4:5; B9:8–9
sill/sediment contacts, A3:66
chlorite
basalt flows, B9:14–15
lithologic units, A4:7
Lower Sill complex, A3:69
middle–upper Eocene sedimentology, B8:12–13
sandstone, B2:4–5
sill hydrothermal alteration, A3:68
sill zoning, A3:67
X-ray diffraction data, A3:52, 237
chlorite, magnesian
hydrothermal alteration, A3:56–57
porphyroblasts, A3:239
Chondrites
lithologic units, A3:22–25, 34, 37
photograph, A3:153, 158, 161–162
chromium
basalt flows, B9:16
black shale, B8:16; B10:5
fine-grained sediments, B8:14
lithologic units, A3:29, 32, 35, 54
oceanic anoxic events, A3:98
vs. depth, B8:51
chromium/aluminum ratio
oceanic anoxic events, A3:98
vs. depth, A3:280
Chron C21r
magnetostratigraphy, A3:93–94
remanent magnetization, A1:19
Chron C29r, magnetostratigraphy, A3:93–94
Chron C33r, magnetostratigraphy, A3:93–94
Chron M0, rifting, B1:45–46
Chron M8, extension rates, B1:20
clasts
lithologic units, A1:22; A3:28; A4:5–6
photomicrograph, B2:23
See also bioclasts; intraclasts
clasts, angular altered sheared serpentinized harzburgite, photograph, B9:48
clasts, aphyric basalt, photograph, A4:19
clasts, basalt, photograph, A4:18
clasts, calcareous mud, photograph, A3:215
clasts, calcareous mudstone rip-up, photograph, A3:134, 146
clasts, carbonate, lithologic units, A3:22–25, 33–34
clasts, gabbro
photograph, B9:48
clasts, granules, lithologic units, A3:37
clasts, hyaloclastite, photograph, B9:50
clasts, lithic, photomicrograph, A3:171
clasts, micrite, lithologic units, A3:28
clasts, micritic carbonate lithic, photomicrograph, A3:149
clasts, mud
photograph, A3:163; B1:20–221
clasts, mudstone, lithologic units, A3:21–25, 58–59
clasts, mudstone rip-up, photograph, A3:132
clasts, muscovite, argon isotopes, B4:1–13
clasts, mylonite, lithologic units, B9:7–8
clasts, rip-up
photograph, A3:201
clasts, sandstone, photograph, A3:214, 218
clasts, scattered elongate rip-up, photograph, A3:202
clasts, serpentinite, lithologic units, A1:22; B9:7–8
clasts, serpentinite + gabbro, photograph, A4:20, 22
clasts, siltstone, photograph, A3:163
clasts, subangular plutonic, photomicrograph, A3:182
clasts, subrounded mudstone, photograph, A3:132
clasts, subrounded siltstone, photograph, A2:203
clasts, volcanic, photomicrograph, A3:174
clay minerals
Albian–Turonian sedimentology, B8:5–7
photomicrograph, A3:226; B2:33–34
sill zoning, A3:67
X-ray diffraction data, A3:52
clays
photograph, A3:176, 178
photomicrograph, A3:171
clays, hemipelagic, synrift sedimentation, B1:25
claystone
fluid inclusions, B5:7–8
photograph, A3:186, 213, 216, 232
provenance, B2:4–5
claystone, biosiliceous, postrift sedimentation, B1:27–28
claystone, carbonate
photograph, A3:32–33, 161
X-ray imaging, B6:16
claystone, hemipelagic, synrift sedimentation, B1:25
claystone, laminated, photograph, A3:190, 194, 212, 234, 236
claystone, laminated calcareous, lithologic units, A3:42–43
claystone, laminated carbonate-rich, photograph, A3:189
claystone, pelagic, postrift sedimentation, B1:29–31
climbing ripple marks, photograph, A3:205
clineoptilolite, lithologic units, A3:30
clinopyroxene
  basalt flows, B9:14–15
diabase sills, A3:243
sill zoning, A3:67
Collector anomaly, continental crust, B1:5
color bands
  lithologic units, A3:38
  photograph, A3:155, 159, 162, 166, 185
compaction
  deformation structures, A3:71–73
  lithologic units, A3:29, 50–52
  mudstone, A1:22
  vs. depth, A1:75
compaction, differential, photograph, A3:153–155, 228
compression, in-plane, tectonic models, B9:30
compressional wave velocity
  igneous rocks, A4:10–11
  sediments, A3:101–104
  vs. depth, A3:290–291; B14:22
concretions
  lithologic units, A3:38
  X-ray imaging, B6:5
  See also microconcretions
concretions, carbonate
  lithologic units, A3:22–25
  photograph, A3:231
  photomicrograph, A3:233
concretions, pyrite, photograph, A3:164, 230
concretions, septarian, photograph, A3:236
concretions, siderite, fluid inclusions, B5:13–14
conglomerate
  lithologic units, B9:7–8, 10–11
  photomicrograph, B9:53
  See also microconglomerate
conglomerate, carbonate granule, lithologic units, A3:26–28
conglomerate, chaotic mud-clast, photograph, A1:64; A3:220–221
conglomerate, graded, photograph, A3:146
Coniacian
  biostratigraphy, A3:78
  comparison at Site 1276 and Site 398, A1:27
  conjugate margins, lithostratigraphy, A1:71; A3:57–63, 241; B2:19; B4:11
continental breakup
  Aptian, A3:53
  seafloor spreading, B9:1–69
  tectonic models, B9:31–33, 66–67
continental margins. See conjugate margins
contorted bedding
  photograph, A1:66; A3:222
  structure, A3:168
convoluted bedding, photograph, A1:67; A3:49, 196, 205, 217–218, 225, 230
cooling units, paleosecular variations, B15:10–11
copper
  black shale, B8:16; B10:5
  Turonian–uppermost Santonian sedimentology, B8:9
  vs. depth, B8:57
core barrels, magnetic vs. nonmagnetic comparison, A3:94–95
core samples, three-dimensional X-ray CT images, B6:19–20
cores. See seismic-core correlation
correlation
  Albian–Turonian sedimentology, B8:8
  lithologic units, A3:111–112
  lower Campanian–upper Paleocene sedimentology, B8:10
  sills, A3:112–113
  Turonian–uppermost Santonian sedimentology, B8:9
  upper Paleocene–middle Eocene sedimentology, B8:12
  cracks, photograph, A4:26
crenulations
  lithologic units, A3:21–25
  photograph, A3:136–137
Crescent Peaks Member, postrift sedimentation, B1:30
Cretaceous
  biostratigraphy, A1:16
  paleoceanography, A1:28–29
  paleogeography, B3:18
  paleolatitude, B15:1–37
  palynomorph biostratigraphy, A3:86–87
  provenance of gravity-flow deposits, B2:5–8
  radiolarian biostratigraphy, A3:87–88
Cretaceous, Lower
  foraminiferal biostratigraphy, A3:82–83
  geology, A1:12–13
  nannofossil biostratigraphy, A3:79–80
  quartz-feldspar-lithic fragments, B2:30
  rifting phases, B1:6–7
  seafloor, B9:1–69
Cretaceous, Upper
  foraminiferal biostratigraphy, A3:81–82
  multicolored mudstone, A1:31–32
  nannofossil biostratigraphy, A3:78–79
  unconformities, A3:74
Cretaceous Normal Superchron
  magnetostratigraphy, A3:94
  remanent magnetization, A1:19; A3:92
Cretaceous/Tertiary boundary
  biostratigraphy, B1:12–13
  critical events, A1:18, 32
  lithologic units, A3:34–35
  nannofossil biostratigraphy, A3:77–78
  photograph, A3:177
  critical events, stratigraphy, A1:17–19
  cross laminations
    lithologic units, A3:27–28, 33–34
    photograph, A3:143, 165–166, 188, 197–198
    photomicrograph, A3:226
crust
  geophysical surveys, A1:6–7
  SCREECH Transect 2, A5:6
  thinning, A1:11
  crust, continental
    rift systems, A1:5–6
    SCREECH Transect 2, A5:6
  crust, prerift, continental crust, B1:5
Curie temperature
  Cretaceous, B15:9
  peridotites, B1:17
current ripples, photograph, A3:184
current-ripple cross laminations, photograph, A3:188
current-ripple laminations, lithologic units, A3:27
Cyclamminidae
  biostratigraphy, A1:23
  lithologic units, A4:8

D
Danian
  biostratigraphy, A3:77, 86
  critical events, A1:18
  See also Cretaceous/Tertiary boundary
debris flows
  lithologic units, A1:14; A3:25
  lithostratigraphy, A3:58–59, 62
  photograph, A3:215, 222
debris flows, sandy, photograph, A3:134
debris flows, silty, photograph, A2:203, 205
deformation
  Iberia-Galicia margin compared with Newfoundland margin, B9:20–21
  photograph, A4:21
deformation, ductile
  photograph, A3:219
  structures, A3:71–73
tectonic models, B9:26–28
deformation, late-stage brittle, tectonic models, B9:29–30
deformation, plastic, photograph, A3:157, 221
deformation, syndepositional
  lithologic units, A3:27
  photograph, A3:147
deformation structures
dip, A3:71–73
  lithologic units, A3:71–73
  vs. depth, A3:256
demagnetization
  Cretaceous, B15:27–32
  sediments, A3:90–93
  Zijderveld diagrams, A3:270, 274; A4:9, 30; B15:19–21
demagnetization, alternating-field, discrete samples, B15:7–8
demagnetization, thermal, discrete samples, B15:7–8
density
  igneous rocks, A1:24; A4:10
  lithology automatic association with laboratory measurements, B7:1–21
  sediments, A3:99–101
  seismic-borehole correlation, A3:107–108
  seismic-core correlation, B14:6–9
density, bulk
  sediments, A1:21
time-depth conversion, A3:108–110
  vs. depth, A1:74; A3:283–286; A4:31; B7:14; B14:22
density, gamma ray attenuation bulk, time-depth conversion, A3:108
density, grain, vs. depth, A3:285–286; A4:31; B7:14
deposition, hemipelagic, lithostratigraphy, A3:58–59, 64
dewatering, lithologic units, A3:36–37
diabase
  lithologic units, A1:15
  magnetization, B15:9–10
diabase, aphyric, petrology, A3:65–70
diabase, massive, sill zoning, A3:67
diagenesis
  data, B7:21
geochemistry, B8:1–63
  lithologic units, A1:14; A3:24, 29, 35, 38, 50–52
  photograph, A3:155, 159, 162, 176, 227, 234–235
  See also cementation; compaction; lithification
diatoms, biostratigraphy, A3:88
dikes, alkaline, postrift magmatism, B1:24
dikes, sedimentary, photograph, A3:144
dinoflagellate datums, distribution, A3:338
dinoflagellates, biostratigraphy vs. depth, B13:41–43
dip
d  deformation structures, A3:71–73
  paleocurrents, B3:1–27
  reflections, B3:24
  vs. depths of core tops, B3:20
dissolution
  biostratigraphy, A3:76
  lithologic units, A3:35
  nanofossils, B13:6–25
  photomicrograph, B2:20
dolomicroite, photomicrograph, A3:233
dolomite, deposition, A3:62
dropstone, glacial, photograph, A4:19
dunites, lithologic units, A1:23

E
Echinoderms
  lithologic units, A3:22–25
  provenance of Eocene sandstone, B2:10
Echinoid spines, photomicrograph, A3:223
Eocene
  benthic foraminifers, B12:1–8
  muscovite, B4:4
  paleoenvironment, B13:23
  provenance of sandstone, B2:9–10
  quartz-feldspar-lithic fragments system, B2:27
  quartz-potassium feldspar-plagioclase system histograms, B2:29
  remanent magnetization, A1:19
  sandstone and grainstone, B2:1–47
  See also Paleocene/Eocene boundary; Paleocene/Eocene Thermal Maximum; Paleocene–Eocene transition
Eocene, lower
  biostratigraphy, A3:85; B13:17
  lithologic units, A3:25–30, 59–60
  sedimentation rates, A3:89
Eocene, lower-middle, sedimentation, A3:63
Eocene, middle  
- biostratigraphy, A3:75, 80, 85, 87; B13:17–19  
- comparison at Site 1276 and Site 398, A1:28  
- lithostratigraphy, A3:58–60  
- magnetostratigraphy, A3:93–94  
- photograph, A3:144  
- postrift sedimentation, B1:31–33  
- sedimentation, A3:63  
- sedimentation rates, A3:89  
- sedimentology, B8:10–17  
- Eocene, middle–upper, comparison at Site 1276 and Site 398, A1:28  
- Eocene, upper  
- biostratigraphy, A3:75, 83  
- lithologic units, A3:21–25, 58–59  
- sedimentology, B8:12–13  
- Eocene–lower Oligocene sequence, sedimentation, A1:12  
- epeirogeny, rifting phases, B1:6  
- epiclastics, Paleocene, B2:8  
- Estremadura Spur, rift systems, A1:5–6  
- ethane  
- sediments, A3:95 vs. depth, A1:73; A3:277  
- See also methane/ethane ratio  
- Europe, Cretaceous paleolatitude, B15:36  
- evaporites, rifting phases, B1:8  
- exhumation, mantle, B1:9–11; B9:1–69  
- extension  
- continental crust, A5:36  
- rift systems, A1:4–6  
- rifting phases, B1:6–15  
- tectonic models, B9:26–28  
- extension, intraplate, rifting, B1:12–15  
- extension, transitional, magnetic anomalies, B1:15–21

F

fabric  
- equal-area rose diagrams, B3:21–22  
- lithologic units, A4:7  
- fabric, grain, planar laminations, B3:26–27  
- fabric, mylonite, photograph, A4:26  
- fault gouge, lithologic units, A4:7  
- faulting, tectonic models, B9:30–31  
- faults  
- deformation structures, A3:71–73  
- SCREECH Transect 2, A5:6; B1:7  
- seismic profiles, A1:26  
- faults, conjugate normal, photograph, A3:258  
- faults, detachment, lithologic units, B9:7–8  
- faults, normal  
- deformation structures, A3:71–73  
- lithologic units, A3:21–25  
- rifting, B1:12  
- faults, reverse, photograph, A3:138, 262  
- faults, soft-sediment, sediments, A3:29  
- faults, syndepositional, lithologic units, A3:35  
- fecal pellets  
- lithologic units, A3:22–25  
- photograph, A3:232  
- photomicrograph, A3:171, 233  
- feldspar  
- lithologic units, A3:37  
- photomicrograph, A3:181, 206; B2:21  
- feldspar, sericitized, photomicrograph, A3:182  
- ferrogabbro, postrift magmatism, B1:24  
- fish bones, biostratigraphy, A3:88  
- fish teeth, biostratigraphy, A3:88; B13:19  
- fissures, lithologic units, B9:11–13  
- fissures, neptunian  
- lithologic units, A4:4–6  
- photograph, A4:23  
- Flemish Cap  
- provenance of gravity-flow deposits, B2:5–8  
- rift systems, A1:4–6; B1:9  
- Flemish Cap Graben, rift systems, A1:4–6  
- Flemish Hinge, rift systems, A1:5–6  
- Flemish Pass Basin  
- rift systems, A1:4–6  
- rifting phases, B1:6  
- fluid inclusions  
- petrography, B5:7–14  
- quartz, B5:1–21  
- folds  
- axial plane, A3:259  
- deformation structures, A3:71–73  
- lithologic units, A3:24  
- photograph, A3:136–137, 219  
- See also microfolds  
- folds, asymmetric  
- deformation structures, A3:72–73  
- photograph, A3:261  
- folds, chevron-type  
- axial planes, A3:257  
- photograph, A3:257  
- folds, recumbent, photograph, A3:179  
- folds, similar, lithologic units, A3:48  
- folds, soft-sediment, sediments, A3:29  
- folds, synsedimentary  
- lithologic units, A3:45  
- photograph, A3:148  
- foliation  
- lithologic units, A4:7–8  
- photograph, A4:26  
- foliation, high-temperature, photograph, A4:14, 27  
- foliation, mylonitic, lithologic units, A4:7–8  
- foraminiferal datums, distribution, A3:339  
- foraminiferal zoning, vs. age, B13:37–40  
- foraminifers  
- biostratigraphy, A1:16  
- lithologic units, A3:22–25, 28, 42  
- photomicrograph, B2:20  
- provenance of Eocene sandstone, B2:10  
- foraminifers, agglutinated, photomicrograph, A3:183  
- foraminifers, agglutinated benthic, photograph, A4:19  
- foraminifers, benthic  
- biostratigraphy, A1:23; A3:83–84; A4:31  
- distribution, A3:336
VOLUME 210 SUBJECT INDEX

foraminifers, benthic (continued) • Helicodromites (?), lithologic units

Eocene, B12:1–8
lithologic units, A3:26–28
photomicrograph, A3:149–151
postrift sedimentation, B1:31

foraminifers, planktonic
biostratigraphy, A3:80–83; B13:1–53
biostratigraphy vs. depth, B13:41–43
photomicrograph, A3:133, 150, 171, 209

fractures
lithologic units, A1:23; A4:4–8
photograph, A4:18, 20
fractures, calcite-filled, photograph, A4:24

G

gabbro clasts, lithologic units, A1:22
gabbro grains, photograph, A4:24
gabbros, altered
lithologic units, A4:5–6
photograph, A4:21; B9:46
gabbros, foliated, photograph, A4:21
gabbros, tectonized, lithologic units, A4:6–7

Galicia Bank
lithology comparison with Newfoundland margin,
B9:19–22
lithostratigraphy, A3:58–63
rift systems, A1:4–6; B1:9–15
seismic profiles, A1:26

Galicia Interior Basin
rift systems, A1:4–6
rifting phases, B1:6

Galicia margin
seismic profiles, B1:50–51
See also Iberia-Galicia margin

gamma rays
vs. depth, A1:74; A3:299–303; B7:16
gateways, geology, A1:12–13
geochemistry
diagenesis, B8:1–63
multiproxy characterization of black shales, B10:1–16
shale composite, B8:59
Site 1276, A1:20–21; A3:95–98
Site 1277, B9:68–69
geochronology, Newfoundland Basin, B4:1–13
geology, rift systems, A1:4–6; B1:1–55
geophysical data, marine, SCREECH Transect 2, A5:1–36
geo physical surveys, crust, A1:6–7

Gibraltar. See Newfoundland-Gibraltar Fracture Zone
glaucolite
lithologic units, A3:26–28, 33–34, 37
photograph, A3:131, 149
photomicrograph, A3:152, 182, 223; B2:20
sandstone, B2:5
glaucolite, epigenetic, photomicrograph, A3:150
Globotruncana orientalis, photomicrograph, A3:171
goethite, lithologic units, A3:38

granite, fragment, photograph, A3:258
graded bedding
lithologic units, A3:26–60
photograph, A1:65; A3:131–132

H

hafnium-thorium-tantalum system, basalts, B9:61
harzburgites, lithologic units, A1:23

harzburgites, serpentinized
lithologic units, B9:5–6
tectonic models, B9:46–51

harzburgites, serpentinized brecciated, photograph,
B9:46

harzburgites, serpentinized spinel, mantle exhumation,
B1:14–15

Hatteras Formation, sedimentation, A1:12; A3:64

Haueterian
quartz-potassium feldspar-plagioclase system histograms, B2:29
rifting phases, B1:8
synrift sedimentation, B1:25–27

Helicodromites (?), lithologic units, A3:22–25
Hettangian, rifting phases, B1:6
hexane, sediments, A3:95
hiatuses
  biostratigraphy, B13:24–25
  comparison at Site 1276 and Site 398, A1:27–28
  lithologic units, A1:14–15
  sedimentation, A1:13
Hibernia Field, provenance of gravity-flow deposits, B2:6
Horseshoe Basin, rifting phases, B1:6
hyaloclastite
  lithologic units, A4:4–6
  photograph, A4:17, 19, 23; B9:50–52
  photomicrograph, B9:54–55
hydrocarbons
  headspace gases, A3:342–344
  sediments, A3:353–355
hydrocarbons, volatile, sediments, A3:95
hydroclastite, lithologic units, B9:11–13
hydrogen, sediments, A3:96, 349–352
hydrogen index
  black shale, B10:4–5
  sediments, A3:353–355
  vs. depth, A3:281
  vs. oxygen index, B10:10
hydrothermal alteration
  photograph, A1:68; A3:238–240
  photomicrograph, A3:246
  sediments, A3:56–57
  sills, A3:68
  See also alteration
  hysteresis, igneous rocks, B15:25

I
Iberia Abyssal Plain
  lithology comparison with Newfoundland margin, B9:19–22
  rift systems, A1:4–6
Iberia margin
  compared with western central North Atlantic, A3:57–63
  rift systems, A1:1–78
  stratigraphy compared with central Atlantic Ocean N, A3:63–64
  stratigraphy comparison with Site 1276, A1:24–28
  See also Grand Banks-Iberia platform; Newfoundland-Iberia rift
Iberia/Africa plate boundary, postrift magmatism, B1:24
Iberia-Galicia margin, lithology comparison with Newfoundland margin, B9:19–22
Iberia-Newfoundland rift
  lithology compared with Alps and Apennines, B9:23–25
  lithology compared with Iberia-Galicia margin, B9:19–22
ichthyoliths, biostratigraphy, A3:88
igneous petrology
  Site 1276, A1:15; A3:64–70
  Site 1277, A4:3–8
igneous rocks, hysteresis, B15:25
igneous-sedimentary cover, lithologic units, B9:6–14

K
kaolinite
  fine-grained sediments, B8:14
  lithologic units, A3:32
  middle-upper Eocene sedimentology, B8:12–13
  X-ray diffraction data, A3:237
illite/smectite mixed minerals
  fine-grained sediments, B8:14
  X-ray diffraction data, A3:52
inoceramids, biostratigraphy, A3:88
intergrowths, lithologic units, A4:7
intergrowths, muscovite/quartz, photomicrograph, B2:22
intraclasts
  lithologic units, A3:42, 45
  provenance of Eocene sandstone, B2:10
intraclasts, mudstone, photomicrograph, A3:207
intraparticles, photomicrograph, B2:20
intrusions, sill injection, B1:22
intrusive rocks, photomicrograph, A3:255
iron
  basalt flows, B9:16
  lithologic units, A3:35, 54
iron oxide
  Albion–Turonian sedimentology, B8:8
  black shale, B8:16
  lithologic units, A3:33, 38
  vs. aluminum oxide, B8:30
  vs. depth, B8:43
  vs. manganese oxide, B8:32
iron oxides, photograph, A3:194
isopach maps
  acoustic Unit 4, A1:55
  U-basement, A1:52

J
J-anomaly
  Mesozoic crust, B1:15–16
  SCREECH Transect 2, A5:5
Jeanne d’Arc Basin, rifting phases, B1:6, 11
Jurassic, Lower, rifting phases, B1:6
Jurassic, Middle, rifting phases, B1:6–9
Jurassic, quartz-feldspar-lithic fragments system, B2:31

K
kaolinite
  fine-grained sediments, B8:14
  lithologic units, A3:32
  lower Sill complex, A3:69
  photomicrograph, B2:24
  sill zoning, A3:67
  X-ray diffraction data, A3:52, 237
kerogen
  Rock-Eval pyrolysis, A3:97
  sediments, A3:353–355
  vs. depth, A3:281
Kimmeridgian, rifting phases, B1:6–7
Koenigsberger ratio, diabase sills, A3:340–341
laminations
  photograph, A1:65; A3:137, 139, 172, 176, 203, 205
  photomicrograph, B9:53
  X-ray imaging, B6:4
See also convoluted bedding; crenulations; cross laminations; parallel laminations; planar laminations; swirled laminations; wavy laminations
laminations, anastomosing, photograph, A3:143
laminations, botryoidal, lithologic units, B9:13–14
laminations, crenulate, lithologic units, A3:24
laminations, crenulate convolute, lithologic units, A3:24
laminations, deformed, photograph, A3:138
lava, lithologic units, B9:8–9
Leg 210, drilling and coring summary, A1:78
lepispheres, lithologic units, A3:24
limestone, micritic, photomicrograph, A3:150
lithic fragments
  histograms, B2:28
  lithologic units, B9:13–14
  sandstone, B2:4–5
lithification, pore water, A3:98
lithologic units
  correlation, A3:111–112; B7:13
  seismic-core correlation, B14:1–6, 11–16
  Site 1276, A1:13–15; A3:21–64
  Site 1277, A1:22–23; A4:4–8
  summary, A3:316–317
  Unit 1, A3:21–25, 58–59; A4:4–6
  Unit 2, A3:25–30, 59–60; A4:6–8
  Unit 3, A3:30–36, 60–61
  Unit 4, A3:36–39, 61
  Unit 5, A3:39–57, 61–63
  volcanoclastics, B9:5–14
lithology
  automatic association with laboratory measurements, B7:1–21
  Lower Sill complex, A3:70
  sediments, B7:19
  vs. depth, A3:263–265
lithosphere. See also mantle lithosphere
lithosphere, exhumed, Iberia-Galicia margin compared with Newfoundland margin, B9:19–20
lithostratigraphy
  conjugate margins, A3:57–63
  Iberia-Galicia margin, A1:71; A3:241
  lower sill units and intervening sediments, A3:253
  Site 398, B2:18
  Site 1276, A1:13–15, 61; A3:20–64; B3:16; B8:24
  Site 1277, A1:22–23; A4:15–16; B9:44–45
  vs. depth, A3:127–129; B2:17
load casts
  bedding, A3:168
  See also microlad casts
load structures, lithologic units, A3:33–34
Lusitanian Basin
  rift systems, A1:4–6
  rifting phases, B1:6
Lutetian, biostratigraphy, A3:85–86
Maastrichtian
  biostratigraphy, A3:78, 80, 84; B13:11–12
  quartz-feldspar-lithic fragments system, B2:26
  quartz-potassium feldspar-plagioclase system histograms, B2:29
Maastrichtian, middle-upper, photomicrograph, A3:171
Maastrichtian, upper, biostratigraphy, A3:81
magnetite
  magnetization, peridottites, B1:18
  magnatic fingers, Lower Sill complex, A3:69–70
  magmatism, rifts, B1:1–55
  magmatism, postrift, rifting, B1:21–24
  magnesium, lithologic units, A3:54
  magnesium oxide
    Albion–Turonian sedimentology, B8:7
    black shale, B8:16
    photomicrograph, A3:150
    vs. aluminum oxide, B8:26
    vs. depth, B8:48
    vs. titanium oxide, B8:29
magnetic anomalies
  maps, A5:34
  serpentinization, B1:17–19
  source, B1:16–17, 52
  transitional extension, B1:15–21
  magnetic Anomaly M0
    comparison at Site 1276 and Site 398, A1:27
    rifting reconstruction, A1:41–42
  magnetic Anomaly M1, reflections, A1:43–44
  magnetic Anomaly M3
    comparison at Site 1276 and Site 398, A1:27
    structural asymmetries, A1:57
magnetic declination
  Cretaceous, B15:27–32
  samples, A4:37
magnetic inclination
  magnetic vs. nonmagnetic core barrel comparison, A3:94–95
  vs. depth, A3:269, 272–273, 276; A4:29; B15:22–23
magnetic inclination, mean, Cretaceous, B15:35
magnetic intensity
  Cretaceous, B15:27–32
  magnetic vs. nonmagnetic core barrel comparison, A3:94–95
  peridottites, B1:18
  samples, A4:37, 39
  sediments, A1:19; A3:90–93
  vs. depth, A3:269, 271–273, 276; A4:29
magnetic surveys, SCREECH Transect 2, A5:1–36
magnetic susceptibility
  samples, A4:38–39
  sediments, A1:19, 21; A3:90–92, 106–107, 340–341
magneto
  diabase, A1:15
  diabase sills, A3:243
  Lower Sill complex, A3:69
  sill zoning, A3:67
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetization, age</td>
<td>B15:9–10</td>
</tr>
<tr>
<td>Magnetostatigraphy, lithologic units</td>
<td>A3:93–94</td>
</tr>
<tr>
<td>Major elements</td>
<td></td>
</tr>
<tr>
<td>Fine-grained sediments</td>
<td>B8:60–63</td>
</tr>
<tr>
<td>Sediments, A3:323–328</td>
<td></td>
</tr>
<tr>
<td>Sills, A3:68–69, 330</td>
<td></td>
</tr>
<tr>
<td>Volcaniclastics, B9:68–69</td>
<td></td>
</tr>
<tr>
<td>Major elements/aluminum ratio, black shale</td>
<td>B10:16</td>
</tr>
<tr>
<td>Manganese, lithologic units</td>
<td>A3:35, 54</td>
</tr>
<tr>
<td>Manganese hydroxides, lithologic units</td>
<td>A3:38</td>
</tr>
<tr>
<td>Manganese oxide</td>
<td></td>
</tr>
<tr>
<td>Albian–Turonian sedimentology</td>
<td>B8:8</td>
</tr>
<tr>
<td>Fine-grained sediments, B8:14</td>
<td></td>
</tr>
<tr>
<td>Lithologic units, A3:33, 53–54</td>
<td></td>
</tr>
<tr>
<td>Lower Campanian–Upper Paleocene sedimentology</td>
<td>B8:10</td>
</tr>
<tr>
<td>Middle–Upper Eocene sedimentology</td>
<td>B8:13</td>
</tr>
<tr>
<td>Vs. depth, B8:47</td>
<td></td>
</tr>
<tr>
<td>Vs. iron oxide, B8:32</td>
<td></td>
</tr>
<tr>
<td>Manganite, lithologic units</td>
<td>A3:38</td>
</tr>
<tr>
<td>Mantle, exhumation</td>
<td>B1:9–11; B9:1–69</td>
</tr>
<tr>
<td>Mantle lithosphere, subcontinental, continental breakup</td>
<td>B9:1–69</td>
</tr>
<tr>
<td>Maps</td>
<td></td>
</tr>
<tr>
<td>Gravity anomalies, A5:35</td>
<td></td>
</tr>
<tr>
<td>Magnetic anomalies, A5:34</td>
<td></td>
</tr>
<tr>
<td>Tectonic terranes, B2:32</td>
<td></td>
</tr>
<tr>
<td>Transects, A1:45–46</td>
<td></td>
</tr>
<tr>
<td>Marble, hydrothermal alteration</td>
<td>A3:56–57</td>
</tr>
<tr>
<td>Marlstone</td>
<td></td>
</tr>
<tr>
<td>Lithologic units, A3:26–28, 32–33, 41–42, 46–47</td>
<td></td>
</tr>
<tr>
<td>Photograph, A1:66; A3:162, 177</td>
<td></td>
</tr>
<tr>
<td>Postrift sedimentation, B1:27–28</td>
<td></td>
</tr>
<tr>
<td>Marlstone, iron-stained, photomicrograph</td>
<td>A3:152</td>
</tr>
<tr>
<td>Marlstone, laminated, photograph</td>
<td>A3:191</td>
</tr>
<tr>
<td>Mass flow deposits</td>
<td></td>
</tr>
<tr>
<td>Lithologic units, A4:5–6; B9:8–11</td>
<td></td>
</tr>
<tr>
<td>Photograph, A4:20</td>
<td></td>
</tr>
<tr>
<td>Structure, A3:168</td>
<td></td>
</tr>
<tr>
<td>Synrift sedimentation, B1:26–27</td>
<td></td>
</tr>
<tr>
<td>Mass flow deposits, ductile, photograph</td>
<td>A3:179</td>
</tr>
<tr>
<td>Mass flow deposits, serpentinite, tectonic models, B9:28</td>
<td></td>
</tr>
<tr>
<td>Mass flow deposits, subaqueous, photograph</td>
<td>A3:132, 146–147, 157, 214</td>
</tr>
<tr>
<td>Matrix, chloritic, photograph</td>
<td>A4:21</td>
</tr>
<tr>
<td>Matrix, sparry calcite, photograph</td>
<td>A4:22–23</td>
</tr>
<tr>
<td>Mauzy Ridge, lithostratigraphy</td>
<td>A1:22</td>
</tr>
<tr>
<td>Maximum angular deviation, sediment magnetization, A3:340–341</td>
<td></td>
</tr>
<tr>
<td>Median destructive field</td>
<td></td>
</tr>
<tr>
<td>Remanent magnetization, A1:24</td>
<td></td>
</tr>
<tr>
<td>Samples, A4:39</td>
<td></td>
</tr>
<tr>
<td>Meguma Terrane</td>
<td></td>
</tr>
<tr>
<td>Continental crust, B1:5</td>
<td></td>
</tr>
<tr>
<td>Geochronology, B4:1–13</td>
<td></td>
</tr>
<tr>
<td>Melting, peridotites, B1:14–15</td>
<td></td>
</tr>
<tr>
<td>Mesozoic</td>
<td></td>
</tr>
<tr>
<td>Diagenesis, B8:1–63</td>
<td></td>
</tr>
<tr>
<td>Nanofossils, A3:335</td>
<td></td>
</tr>
<tr>
<td>Metagrainstone, sill/sediment contacts</td>
<td>A3:66</td>
</tr>
<tr>
<td>Metals, sediments</td>
<td>A3:98</td>
</tr>
<tr>
<td>Metamorphic petrology</td>
<td></td>
</tr>
<tr>
<td>Site 1276, A1:15; A3:64–70</td>
<td></td>
</tr>
<tr>
<td>Site 1277, A4:3–8</td>
<td></td>
</tr>
<tr>
<td>Metamorphism, contact lithologic units</td>
<td>A1:14</td>
</tr>
<tr>
<td>Metamorphism, hydrothermal, sills</td>
<td>B1:23</td>
</tr>
<tr>
<td>Metasedimentary rocks, photomicrograph</td>
<td>B2:22–23</td>
</tr>
<tr>
<td>Methane</td>
<td></td>
</tr>
<tr>
<td>Pore water, A3:98</td>
<td></td>
</tr>
<tr>
<td>Sediments, A1:20; A3:95</td>
<td></td>
</tr>
<tr>
<td>Vs. depth, A1:73, 75; A3:277–278, 289</td>
<td></td>
</tr>
<tr>
<td>Methane/ethane ratio, sediments</td>
<td>A3:95</td>
</tr>
<tr>
<td>Methods, automatic, association of lithologic type with laboratory measurements</td>
<td>B7:1–21</td>
</tr>
<tr>
<td>Mica</td>
<td></td>
</tr>
<tr>
<td>Lithologic units, A3:27, 37</td>
<td></td>
</tr>
<tr>
<td>X-ray diffraction data</td>
<td>A3:237</td>
</tr>
<tr>
<td>Micrite</td>
<td></td>
</tr>
<tr>
<td>Lithologic units, A3:26–28</td>
<td></td>
</tr>
<tr>
<td>Photograph, A3:208</td>
<td></td>
</tr>
<tr>
<td>Photomicrograph, A3:209, 224</td>
<td></td>
</tr>
<tr>
<td>Microconcretions, carbonate, photograph</td>
<td>A3:235</td>
</tr>
<tr>
<td>Microconglomerate, lithologic units</td>
<td>A3:45</td>
</tr>
<tr>
<td>Microflame structures, photograph</td>
<td>A3:199</td>
</tr>
<tr>
<td>Microfolds, photograph</td>
<td>A3:170</td>
</tr>
<tr>
<td>Microfossil zones, vs. depth</td>
<td>A3:263–265</td>
</tr>
<tr>
<td>Microlites. See plagioclase microlites</td>
<td></td>
</tr>
<tr>
<td>Microload casts, photograph</td>
<td>A3:212</td>
</tr>
<tr>
<td>Microphenoocrysts, basalt flows</td>
<td>B9:14–15</td>
</tr>
<tr>
<td>Microspar</td>
<td></td>
</tr>
<tr>
<td>Lithologic units, A3:42, 50–52</td>
<td></td>
</tr>
<tr>
<td>Photomicrograph, A3:209</td>
<td></td>
</tr>
<tr>
<td>Microthermometry, fluid inclusions, B5:1–21</td>
<td></td>
</tr>
<tr>
<td>Mid-Cenomanian Event</td>
<td></td>
</tr>
<tr>
<td>Oceanic anoxic events</td>
<td>A1:20</td>
</tr>
<tr>
<td>Postrift sedimentation, B1:27</td>
<td></td>
</tr>
<tr>
<td>Miliolids, photomicrograph</td>
<td>A3:133</td>
</tr>
<tr>
<td>Mineralogy, basalt flows</td>
<td>B9:14–15</td>
</tr>
<tr>
<td>Minor elements/aluminum ratio, black shale</td>
<td>B10:16</td>
</tr>
<tr>
<td>Mollusk fragments</td>
<td></td>
</tr>
<tr>
<td>Lithologic units, A3:22–25</td>
<td></td>
</tr>
<tr>
<td>Sandstone, B2:5</td>
<td></td>
</tr>
<tr>
<td>Molybdenum, black shale</td>
<td>B8:16; B10:5</td>
</tr>
<tr>
<td>Monzodiorite, postrift magmatism</td>
<td>B1:24</td>
</tr>
<tr>
<td>Mottling, lithologic units</td>
<td>A3:24, 35, 44–45</td>
</tr>
<tr>
<td>Mudrock</td>
<td></td>
</tr>
<tr>
<td>Albian–Turonian sedimentology</td>
<td>B8:5–7</td>
</tr>
<tr>
<td>Lower Campanian–Upper Paleocene sedimentology</td>
<td>B8:10</td>
</tr>
<tr>
<td>Middle–Upper Eocene sedimentology</td>
<td>B8:12–13</td>
</tr>
<tr>
<td>Upper Paleocene–Middle Eocene sedimentology</td>
<td>B8:10–12</td>
</tr>
<tr>
<td>X-ray diffraction data</td>
<td>A3:237</td>
</tr>
<tr>
<td>Mudrock, bioturbated, photograph</td>
<td>A3:187</td>
</tr>
<tr>
<td>Mudrock, porphyroplastic, photograph</td>
<td>A1:68; A3:238–239</td>
</tr>
<tr>
<td>Mudstone</td>
<td></td>
</tr>
</tbody>
</table>
mudstone (continued) • oceanic anoxic Event 2, lithologic units

photograph, A3:140, 142, 154, 177, 184–186, 188, 194, 201–202, 222
opostrift sedimentation, B1:27–28
upper Paleocene–middle Eocene sedimentology, B8:10–12
mudstone, burrowed, photograph, A3:165, 239–240, 261
mudstone, calcareous
lithologic units, A3:41
photograph, A3:160, 191, 211
mudstone, graded
lithologic units, A3:41–42
photograph, A3:190, 195
mudstone, greenish brown, lithologic units, A3:21–25, 58–59
mudstone, hematitic sandy, photomicrograph, A3:181
mudstone, high-porosity low-velocity, undercompacted systems, A3:101
mudstone, laminated, photograph, A3:235
mudstone, massive
photograph, A3:192, 210
X-ray imaging, B6:18
mudstone, massive sandy, photograph, A3:134–135
mudstone, multicolored, Upper Cretaceous, A1:31–32
mudstone, sandy, lithologic units, A3:21–25, 32–33, 36–37, 58–59
mudstone, silty, photograph, A3:158
muscovite
argon isotopes, B4:1–13
lithologic units, A3:37
photograph, A3:208, 223
photomicrograph, B2:20
provenance, B4:3–5
sandstone, B2:4–5
mylonites, lithologic units, A4:5–8
mylonites, serpentinite, lithologic units, A1:23

N

nannofossil bioevents
Cenomanian–Turonian interval, B13:44
middle Campanian–lower Paleogene interval, B13:45
Paleocene–Eocene transition, B13:46
nannofossil datums
distribution, A3:338–339
sedimentation rates, A3:89
nannofossil zoning, vs. age, B13:37–40
nannofossils
biostratigraphy, A1:16
preservation, B13:6–25
nannofossils, calcareous
biostratigraphy, A3:75–80; B11:1–9; B13:1–53
biostratigraphy vs. depth, B13:41–43
distribution, B11:8
nannofossils, Cenozoic, distribution, A3:332–334
nannofossils, Mesozoic, distribution, A3:335
Newfoundland Basin
Albian paleoflow, B3:1–27
biostratigraphy, B13:1–53
gеology, A1:1–78
quartz fluid inclusions, B5:1–21
rifting, B1:11–15

Newfoundland continental rise, seismic profiles, A1:48–50
Newfoundland margin
bathymetry, A1:47
continental breakup, B9:1–69
Cretaceous paleolatitude, B15:1–37
geochemical evidence for sedimentation, B8:1–63
geochronology, B4:1–13
gеology, A1:1–78; B1:1–55
rift systems, A1:5–6
seismic profiles, A1:51
See also Iberia-Newfoundland rift
Newfoundland nonvolcanic rifted margin, marine geophysical data, A5:1–36
Newfoundland Seamounts
age, B1:21
rifting phases, B1:8
Newfoundland-Gibraltar Fracture Zone, postrift magmatism, B1:24
nickel
fine-grained sediments, B8:14
lithologic units, A3:29, 54
Turonian–uppermost Santonian sedimentology, B8:9
upper Paleocene–middle Eocene sedimentology, B8:12
vs. depth, B8:52
nickel/aluminum ratio
oceanic anoxic events, A3:98
vs. depth, A3:280
niobium
basalt flows, B9:16
lower Campanian–upper Paleocene sedimentology, B8:10
niobium anomaly, basalt flows, B9:16–19, 33
niobium/yttrium ratio
basalt flows, B9:16
vs. zirconium/titanium ratio, B9:56
vs. zirconium/yttrium ratio, B9:63
niobium-zirconium-yttrium system, basalts, B9:58
nitrogen
sediments, A3:96, 349–352
See also carbon/nitrogen ratio
nitrogen isotopes
black shale, B10:4, 11–13
vs. total organic carbon, B10:9
nODULES, photograph, A3:232
nODULES, carbonate, lithologic units, A3:51
nODULES, limestone, lithologic units, A3:51–52
nODULES, pyrite, lithologic units, A3:35
Norian, rifting phases, B1:6
North America, Cretaceous paleolatitude, B15:36
Norwegian-Greenland Sea, comparison at Site 1276 and Site 398, A1:28
Nova Scotia, muscovite, B4:4

O

ocean basins, rifting phases, B1:6
ocean circulation, abyssal regions, A1:32
ocean floors, SCREECH Transect 2, A5:6
oceanic anoxic Event 2, lithologic units, A3:43
oceanic anoxic events
black shale, A3:97–98; B10:5; B13:21
postrift sedimentation, B1:27–28
See also Bonarelli event; Paquier events

Oligocene, lower
biostratigraphy, A3:85; B13:17–19
lithologic units, A3:21–25, 58–59
lithostratigraphy, A3:58–59
paleoenvironment, B13:23–24
postrift sedimentation, B1:32–33

Oligocene, remanent magnetization, A1:19
olivine
diabase, A1:15
Lower Sill complex, A3:69
sill zoning, A3:67

opal
lithologic units, A3:33
lower Campanian–upper Paleocene sedimentology, B8:10

opal-A
lithologic units, A3:30
middle–upper Eocene sedimentology, B8:12
opal-CT, lithologic units, A3:24, 30
organic debris, lithologic units, A3:42
organic matter
black shale, B10:4–5
Rock-Eval pyrolysis, A3:97
vs. depth, A3:281
orthopyroxene, altered, photograph, A4:14
orthopyroxene, lithologic units, A4:7
ostracode shells
lithologic units, A3:22–25
photomicrograph, A3:151
Oxfordian, rifting phases, B1:6–7
oxidation
lithologic units, A3:29; B8:17
photograph, A3:185, 194
oxygen index
black shale, B10:4–5
vs. hydrogen index, B10:10
oxygen isotopes, peridotites, B1:17
oxygen-minimum zones, deposition, A3:62

P
paleoceanography
Cretaceous, A1:28–29
paleoenvironment, A1:17
sedimentation, A1:12–13
paleoceanography, abyssal, gateways, A1:16
Paleocene
muscovite, B4:4
paleoenvironment, B13:22–23
photomicrograph, A3:171
postrift sedimentation, B1:28–31
provenance of volcanic sand, B2:8–9
quartz-feldspar-lithic fragments system, B2:27
quartz-potassic feldspar-plagioclase system histograms, B2:29
sandstone and grainstone, B2:1–47
seafloor spreading, A1:12–13
sedimentation, A3:63–64
See also Cretaceous/Tertiary boundary
Paleocene, lower
biostratigraphy, A3:86, 88; B13:13–14
remanent magnetization, A1:19
Paleocene, upper
biostratigraphy, A3:81, 86; B13:14–15
lithologic units, A3:25–36, 59–61
lithostratigraphy, A3:59–61
magnetostatigraphy, A3:93–94
postrift sedimentation, B1:31
sedimentology, B8:10–12
Paleocene/Eocene boundary
biostratigraphy, B13:15–16
critical events, A1:17–18
nannofossil biostratigraphy, A3:76–77
Paleocene/Eocene Thermal Maximum
biostratigraphy, A3:76; B13:15–16
critical events, A1:17–18, 32
Paleocene–Eocene transition, nannofossil bioevents, B13:46
paleoclimatology
lithologic units, A1:14–15; A3:38
Paleocene/Eocene Thermal Maximum, A1:17–18
paleocurrents, turbidity currents, B3:1–27
paleodepth, abyssal, benthic foraminifers, A3:83
paleoenvironment, paleoceanography, A1:17
paleoflow directions, turbidity currents, B3:1–27; B4:5
Paleogene
biostratigraphy, A1:16
foraminiferal biostratigraphy, A3:80–81
nannofossil biostratigraphy, A3:75–76
palynomorph biostratigraphy, A3:85–86
radiolarian biostratigraphy, A3:87–88
paleogeography
Cretaceous, B3:18
quartz-feldspar-lithic fragments system, B2:37
paleolatitude, Cretaceous, B15:1–37
paleomagnetism
paleocurrent dip, B3:10–11
Site 1276, A1:19–20; A3:90–95
Site 1277, A1:23–24; A4:9
paleosecular variations, sills, B15:10–11
palynomorphs
biostratigraphy, A1:16; A3:85–87
biostratigraphy vs. depth, B13:41–43
distribution, A3:337
Paquier events, critical events, A1:19, 21
parallel laminations, photograph, A3:200, 217
pebbles, subrounded, photograph, A3:145
pegmatites, gabbroic, rifting, B1:12
pellets
lithologic units, A3:51
photomicrograph, A3:233
pentane, sediments, A3:95
peridotite ridges, tectonic models, B9:30–31
peridotites
  - magnetic anomalies, B1:16–17
  - melting, B1:14–15
  - oxygen isotopes, B1:17
  - rifting, B1:12
peridotites, foliated serpentinized, photograph, A4:14, 25–27
peridotites, serpentinized
  - lithologic units, A4:5–8
  - photograph, A4:28
  - remanent magnetization, A1:24
petrography
  - grainstone, B2:4–5
  - sandstone, B2:4–5
phenocrysts. See microphenocrysts
phosphate grains, photomicrograph, A3:171
phosphatic layers, lithologic units, A3:52
phosphorus oxide
  - fine-grained sediments, B8:14
  - lithologic units, A3:54
  - lower Campanian–upper Paleocene sedimentology, B8:10
  - upper Paleocene–middle Eocene sedimentology, B8:12
  - vs. depth, B8:46
phyllite, photomicrograph, A3:223
physical properties
  - seismic-core correlation, B14:6–9, 11–16
  - Site 1277, A1:24; A4:10–11
plagioclase
  - basal flows, B9:14–15
  - diabase, A1:15
  - diabase sills, A3:243
  - lithologic units, A3:28, 33
  - Lower Sill complex, A3:69
  - photomicrograph, B2:20
  - sandstone, B2:4–5
  - segregation bands, A3:68
  - sill zoning, A3:67
plagioclase, elongate, lithologic units, A4:6
plagioclase aggregates, photograph, A4:21
plagioclase laths, photomicrograph, A3:247, 250
plagioclase microlites, photomicrograph, A3:152
planar lamina tions
  - grain fabric, B3:26–27
  - lithologic units, A3:27–28, 33–34; A4:5
  - paleocurrent dip, B3:10–11
plant debris
  - black shale, B10:4–5
  - lithologic units, A3:43
  - photomicrograph, A3:224
Plantagenet Formation
  - postrift sedimentation, B1:30
  - sedimentation, A1:12; A3:63–64
  - plate tectonics, rift systems, A1:4–6
Pliocene, sedimentation, A3:63
  - polar wander, paleosecular variations, B15:11–13
pore water
  - geochemistry, A3:98
  - sulfate, A3:356
porosity
  - igneous rocks, A1:24; A4:10
  - lithology automatic association with laboratory measurements, B7:1–21
  - sandstone, B2:4–5
  - seismic-core correlation, B14:6–9
porphyroblasts
  - hydrothermal alteration, A3:56–57
  - photograph, A3:244
  - quartz, A3:239
  - porphyroblasts, asymmetric, photograph, A4:14
  - porphyroblasts, calcite, sill/sediment contacts, A3:66
  - porphyroblasts, elongate, lithologic units, A4:6
  - porphyroblasts, pyroxene, photograph, A4:26
  - Porto Basin, rifting phases, B1:6
potassium, lithologic units, A3:54
  - potassium feldspar
  - lithologic units, A3:33
  - provenance of gravity-flow deposits, B2:7–8
potassium oxide
  - Albain–Turonian sedimentology, B8:7
  - black shale, B8:16
  - fine-grained sediments, B8:14
  - sills, A3:68
  - Turonian–uppermost Santonian sedimentology, B8:9
  - vs. aluminum oxide, B8:25, 35
  - vs. depth, B8:42
  - vs. silica, A3:251
  - vs. titanium oxide, B8:36
  - See also sodium oxide + potassium oxide
preservation, nannofossils, B13:6–25
pressure solution, photograph, A3:155
Priabonian, biostratigraphy, A3:85–86
productivity
  - barium, A3:98; B10:5
  - black shale, B10:5
  - upwelling, B8:17
productivity hypothesis, finely laminated black shal e origin, A3:55–56
propane, sediments, A3:95
protostylolites, lithologic units, A3:29
provenance
  - fine-grained sediments, B8:13–15
  - muscovite, B4:3–5
  - quartz granitoid sources, B5:3–4
  - quartz-feldspar-lithic fragments system, B2:36
pyrite
  - hydrothermal alteration, A3:57
  - lithologic units, A3:42
  - Lower Sill complex, A3:69
  - photomicrograph, A3:133, 171
  - sill zoning, A3:67
  - pyrite, frambooidal, lithologic units, A3:52
pyroclastic debris, photomicrograph, B2:34
pyroclasts, vitric, photomicrograph, A3:175
pyrolysis, Rock-Eval
  black shale, B10:4–5
  organic matter, A3:97
pyroxene
  diabase, A1:15
  Lower Sill complex, A3:69
  See also augite; clinopyroxene; orthopyroxene
pyroxene aggregates, elongate recrystallized, photomicrograph, A4:26
quartz
  Albion–Turonian sedimentology, B8:5–7
  hydrothermal alteration, A3:56–57
  lithologic units, A3:23–25, 33, 37, 45
  Lower Sill complex, A3:69
  porphyroblasts, A3:239
  sill zoning, A3:67
  X-ray diffraction data, A3:52, 237
quartz, chaledonic
  lithologic units, A3:24
  photomicrograph, A3:133
quartz, detrital, fluid inclusions, B5:1–21
quartz, monocrystalline
  photomicrograph, B2:22
  sandstone, B2:4–5
quartz grains, subhedral, photomicrograph, A3:152
radiolarian tests, photomicrograph, A3:133, 209
radiolarians
  biostratigraphy, A3:87–88
  lithologic units, A3:37
  paleoenvironment, B13:19
rare earths
  basalt flows, B9:17–19
  volcaniclastics, B9:69
recrystallization
  hydrothermal alteration, A3:56–57
  photomicrograph, B9:54
red algae
  lithologic units, A3:22–25, 28
  photomicrograph, A3:149
redox, sediments, A3:49–50, 59
reduction, lithologic units, A3:29
reflections
  dip, B3:24
  predicted depths for major boundaries, A1:77
  SCREECH Transect 2, A5:4–5, 11–32; B3:19
  Site 1276 stratigraphy comparison with Iberia margin, A1:24–28
  time-depth of top of cored section, B14:9–10
  transition zones, A1:7–10
Salar-Bonnitton Basin
  rift systems, A1:5–6
  rifting phases, B1:6, 8
salinity
  fluid inclusions, B5:3–4
  vs. temperature, B5:15
sand, volcaniclastic, photograph, B9:47
sand grains, photomicrograph, A3:152
sandstone
  fluid inclusions, B5:1–21
  lithologic units, A1:14; A3:45, 48–49
  paleocurrent dip, B3:10–11
  petrography, B2:4–5
  petrology, B2:1–47
  photograph, A2:203, 210, 219, 222, 227
  point count categories, B2:43–46
  postrift sedimentation, B1:28–31
  quartz-feldspar-lithic fragments system, B2:25–27
  quartz-potassium feldspar-plagioclase system histograms, B2:29
  sedimentary properties, B2:38–42
  vs. depth, A3:127–129
  sandstone, burrowed, lithologic units, A3:36–37
  sandstone, burrowed muddy, photograph, A3:184
  sandstone, calcareous
  photograph, A3:172, 191, 204, 218, 229, 240
sandstone, cross-laminated, photograph, A3:184
sandstone, graded
  lithologic units, A3:37, 41–50
  photograph, A3:146, 195–196, 199
sandstone, horizontally laminated, X-ray imaging, B6:12
sandstone, horizontally laminated calcareous, X-ray imaging, B6:10
sandstone, laminated
  photograph, A3:130
  X-ray imaging, B6:14–15
sandstone, laminated graded, photograph, A4:24
sandstone, lenticular, photograph, A3:153, 228
sandstone, massive, X-ray imaging, B6:17
sandstone, massive silty, photograph, A3:214
sandstone, micaceous, photograph, A4:19
sandstone, muddy
  photograph, A1:62; A3:180
  Turonian–uppermost Santonian sedimentology, B8:9
sandstone, parallel-laminated, X-ray imaging, B6:13
sandstone, planar-trough cross-laminated, X-ray imaging, B6:11
sandstone, porous, photograph, A3:196
sandstone, silty
  photograph, A3:215
  photomicrograph, A3:206
sanidine, lithologic units, A3:33
Santonian
  lithologic units, A1:15, 17; A3:36–39, 61
  quartz-feldspar-lithic fragments system, B2:26
  quartz-potassium feldspar-plagioclase system histograms, B2:29
sedimentology, B8:9
scandium, basalt flows, B9:16
scoured bases
  lithologic units, A3:23
  photograph, A3:142, 165, 172, 187–188
SCREECH Transect 2, marine geophysical data, A5:1–36
Scruncheon Seamount, age, B1:21
seafloor spreading
  continental breakup, B9:1–69
  extension rates, B1:20, 53
  SCREECH Transect 2, A5:6
  Upper Jurassic, B1:6–7
seafloor spreading, ultra-slow, transition zones, A1:12
seams, lithologic units, A3:35
sediment cycles, lithologic units, A3:38
sedimentary beds, apparent dip, A3:256
sedimentary crust, ferromanganese-cemented, lithologic units, B9:13–14
sedimentary structures, photograph, A3:197
sedimentation
  geochemistry, B8:1–63
  rift-to-drift models, B2:10–11
  rifts, B1:1–55
  stratigraphy, A1:12–13
sedimentation, postrift, Mesozoic–Cenozoic, B1:27–33
sedimentation, prerift, Tithonian–Berriasian, B1:25
sedimentation, synrift, Tithonian–Aptian, B1:25–27
sedimentation rates
  biostratigraphy, A3:88–90
  sedimentology, Iberia-ricula margin compared with Newfoundland margin, B9:21
sediments
  hydrothermal alteration, A3:56–57
  lithologic units, A4:4–6
  relation to Lower Sill complex, A3:69–70
  Site 1276 stratigraphy comparison with Iberia margin, A1:24–28
  velocity factors, A3:101–104
  See also igneous-sedimentary cover; sill/sediment contacts
sediments, clastic
  lithologic units, A4:4–6
  photograph, A3:146–147
sediments, coarse-grained, photograph, B9:47
sediments, ferruginous
  lithologic units, A1:22; A4:5
  photograph, A4:19
sediments, fine-grained
  lithologic units, A3:52–55
  provenance, B8:13–15
sediments, hemipelagic, lithologic units, A3:25, 29
sediments, polymict clastic
  lithologic units, A4:6
  photograph, A4:21–23
sediments, postrift, argon isotopes, B4:1–13
segregation bands
  photograph, A3:248
  sills, A3:67–68
seismic horizons, interpretation, B14:31
seismic profiles
  crust, A1:48–51; A5:11–32; B1:48
  Galicia margin, B1:51
  Site 1276, A3:307, 312–313; B3:19; B8:23; B14:21
  Site 1277, A4:34–35; B9:43
  U reflection, B1:54
seismic reflection, vs. synthetic seismograms, A3:311
seismic Sequence A
  comparison at Site 1276 and Site 398, A1:27
  transition zones, A1:7–8
seismic Sequence B
  comparison at Site 1276 and Site 398, A1:27
  Site 1276 stratigraphy comparison with Iberia margin, A1:24–28
  transition zones, A1:8–9
seismic Sequence C
  comparison at Site 1276 and Site 398, A1:28
  Site 1276 stratigraphy comparison with Iberia margin, A1:25
  transition zones, A1:9
seismic Sequence D
  comparison at Site 1276 and Site 398, A1:28
  Site 1276 stratigraphy comparison with Iberia margin, A1:25
  transition zones, A1:9–10
seismic Sequence E, transition zones, A1:10
seismic Sequence F, transition zones, A1:10
seismic sequences
  comparison at Site 1276 and Site 398, A1:27–28
transition zones, A1:7–10
seismic source wavelets, synthetic seismograms, B14:9, 26
seismic surveys
  basement, A4:11–12
  SCREECH Transect 2, A5:1–36
seismic-borehole correlation
density and velocity, A3:107–108
Site 1276, A3:107–113
Site 1277, A4:11–12
seismic-core correlation, Site 1276, B14:1–33
seismograms, synthetic
correlation to seismic reflection data, A3:311
source wavelets, A3:110–111
Selandian, biostratigraphy, A3:86
serpentinite
  remanent magnetization, A1:23–24
  grains, detrital
    photograph, A4:24
    photomicrograph, B9:53, 55
serpentinitization, magnetic anomalies, B1:17–19
serpentinitization, postkinematic, photograph, A4:26
shale composite, geochemistry, B8:59
shear zones
defformation structures, A3:71–73
  photograph, A3:136
shear zones, ductile
  lithologic units, A3:24
  photograph, A3:170, 261
shear zones, synsedimentary, photograph, A3:148
siderite
deposition, A3:62
  photograph, A3:231
siderite, cryptocrystalline, lithologic units, A3:51
sila
calc-siltite, ferruginous
siltstone
  fluid inclusions, B5:1–21
  lithologic units, A1:14; A3:45
  photograph, A3:192; A3:250, 281–282
  photomicrograph, A3:226
siltstone, bioclastic carbonate, fluid inclusions, B5:9–10
siltstone, burrowed, photograph, A3:165
siltstone, calcareous
  lithologic units, A3:33–34, 41
  photograph, A3:204, 244
siltstone, deformed, photograph, A3:179
siltstone, graded
  lithologic units, A3:37, 41–42
  photograph, A3:190, 195
siltstone, laminated, photograph, A3:193, 212, 262
siltstone, laminated terrigenous, photograph, A3:208
siltstone, lenticular, photograph, A3:69; A3:216
siltstone, muddy
  lithologic units, A3:34
  Turonian–uppermost Santonian sedimentology, B8:9
siltstone, sandy
  photograph, A3:207
  photomicrograph, A3:223–224
siltstone, tuffaceous, photomicrograph, A3:175
Sinemurian, rifiting phases, B1:6
Site 398
  biostratigraphic datums vs. depth, A3:267
  lithostratigraphy, B2:18
  Lower Cretaceous quartz-feldspar-lithic fragments, B2:30
  seismic and sedimentary succession, A1:25–26
Site 1065, Tithonian and Jurassic quartz-feldspar-lithic fragments, B2:31
Site 1069, Tithonian and Jurassic quartz-feldspar-lithic fragments, B2:31
Site 1276, A3:1–358
  Albian nannofossil biostratigraphy, B11:1–9
  biostratigraphic datums vs. depth, A3:266
biostratigraphy, A1:16–19; A3:73–90; B11:1–9; B12:1–8; B13:1–53
biostratigraphy summary, A3:331
coring summary, A3:314–315
Cretaceous paleolatitude, B15:11–13, 26
drilling, A1:58–59
Eocene benthic foraminifers, B12:1–8
geochemical evidence for sedimentation, B8:1–63
igneous and metamorphic petrology, A1:15; A3:64–70
lithologic unit summary, A3:20–64, 127–129
major and trace elements, A3:323–328
multiproxy geochemical characterization of black shales, B10:1–16
operations, A1:60; A3:4–20, 122–126
paleomagnetism, A1:19–20; A3:90–95
physical properties, A1:21–22; A3:99–107
quartz fluid inclusions, B5:1–21
sedimentation rates, A3:329
seismic-borehole correlation, A3:107–113
site description, A3:1–358
site summary, A3:66–67
synthesis, A1:13–22
U reflection, A1:31
X-ray diffraction data, A3:318–322
Site 1277, A4:1–39
basalt flows, B9:1–69
biostratigraphy, A1:23; A4:8
comparison of tectonic and stratigraphic relations at top of basement, B9:64
coring summary, A4:36
Cretaceous paleolatitude, B15:11–13, 26
geochemistry, B9:68–69
igneous and metamorphic petrology, A4:3–8
lithostratigraphy, A1:22–23
operations, A1:60; A4:2–3
paleomagnetism, A1:23–24; A4:9
physical properties, A1:24; A4:10–11
seafloor relations, B9:65
seismic-borehole correlation, A4:11–12
site description, A4:1–39
site summary, A4:1–2
synthesis, A1:22–24
smectite
lithologic units, A3:30, 33
Lower Sill complex, A3:69
sill zoning, A3:67
X-ray diffraction data, A3:237
See also illite/smectite mixed minerals
sodium oxide
Albian–Turonian sedimentology, B8:7
fine-grained sediments, B8:14
sills, A3:68
vs. aluminum oxide, B8:27
vs. depth, B8:49
sodium oxide + potassium oxide, vs. silica, A3:69, 252
soft-sediment deformation
photograph, A3:135–138, 156, 170, 205, 216, 219
X-ray imaging, B6:5
spinel, lithologic units, A4:7
sponge spicules
lithologic units, A3:4–20
photomicrograph, A3:133
stratigraphy
critical events, A1:17–19
sedimentation, A1:12–13
strontium, fine-grained sediments, B8:15
structural geology, Site 1276, A3:70–73
structures, brittle, sediments, A3:29
structures, X-ray imaging, B6:1–21
stylolites
photograph, A3:155, 178, 260
See also protostylolites
submarine erosion, lithologic units, B9:14
submarine fans, rift-to-drift models, B2:11
subsidence, rifting phases, B1:6
sudioite, hydrothermal alteration, A3:57
sulfate, pore water, A3:98, 356
swirled laminations
lithologic units, A3:27
photograph, A3:217–219
T
Tagus Abyssal Plain, rift systems, A1:5–6
tantalum. See hafnium-thorium-tantalum system
tectonic models
basaltic volcanism, B9:29
continental breakup, B9:31–33, 66–67
ductile deformation and extension, B9:26–28
faulting and uplift of peridotite ridge, B9:30–31
in-plane compression, B9:30
late-stage brittle deformation, B9:29–30
serpentine mass flows, B9:28
serpentinitized harzburgites, B9:25–26
tectonic terranes, maps, B2:32
tectonics
continental crust, A5:36
Iberia-Galicia margin compared with Newfoundland margin, B9:20
rift systems, A1:4–6; B1:1–55
tectonite, quartz-mica, sandstone, B2:4–5
temperature
black shale, B10:4–5
remanent magnetization, B15:24
Rock-Eval pyrolysis, A3:97
vs. depth, A3:281
vs. hydrogen index, A3:282
vs. salinity, B5:15
terranes, accreted, continental crust, B1:5
terrigenous input, lithologic units, A3:30, 54–55; B8:17–18
terrigenous input hypothesis, finely laminated black shale origin, A3:55–56
Tertiary. See Cretaceous/Tertiary boundary

Tethyan, biostratigraphy, A3:81, 88

textures, felsic, sandstone, B2:4–5

textures, glassy, relation to Lower Sill complex, A3:69–70
textures, granular, lithologic units, A3:51
textures, intergranular
diabase sills, A3:243, 249
photomicrograph, A3:247
sill zoning, A3:67
textures, intersertal
diabase sills, A3:243
Lower Sill complex, A3:70
photomicrograph, A3:246–248
sill zoning, A3:67
textures, jigsaw-type, photograph, A4:18
textures, laminated, photograph, A4:19
textures, Lower Sill complex, A3:70
textures, magmatic, sill zoning, A3:67
textures, microbial, photograph, A4:19
textures, microlitic
photomicrograph, B2:33–35
sandstone, B2:4–5
textures, patchy, sill zoning, A3:67

textures, relict vesicular pumice, photomicrograph, B2:35

textures, stromatolitic, photograph, A4:19
textures, subophitic
diabase sills, A3:243
sill zoning, A3:67
textures, swirled, photograph, A3:135

textures, vesicular, photomicrograph, A3:226; B2:34
thermal conductivity
igneous rocks, A1:24; A4:11
sediments, A1:21; A3:104–105
vs. depth, A3:297–298; A4:33
thermal degradation, vs. depth, A3:281
thermal overprint, relation to Lower Sill complex, A3:70

thorium
basalt flows, B9:17
See also hafnium-thorium-tantalum system
time-depth conversion, laboratory studies, A3:108–111
titanium
basalt flows, B9:17
lithologic units, A3:35, 54
vs. vanadium, B9:57, 60
See also zirconium/titanium ratio
titanium oxide
Albian–Turonian sedimentology, B8:7
black shale, B8:16
fine-grained sediments, B8:14
lithologic units, A3:33, 53–54
middle–upper Eocene sedimentology, B8:13
sills, A3:68
Turonian–uppermost Santonian sedimentology, B8:9
upper Paleocene–middle Eocene sedimentology, B8:12
vs. aluminum oxide, B8:28, 33, 37, 39
vs. depth, B8:41
vs. magnesium oxide, B8:29
vs. potassium oxide, B8:36
vs. silica, A3:251; B8:38

vs. zirconium, A3:251
titanium/zirconium ratio, basalt flows, B9:16
titanium-zirconium-yttrium system, basalts, B9:58, 61
titanomagnetite, Cretaceous, B15:9

Tithonian
quartz-feldspar-lithic fragments system, B2:31
rifting phases, B1:6–7
synrift sedimentation, B1:25
tonalite, continental crust, B1:5
Tore Seamount, rifting phases, B1:8
tourmaline, lithologic units, A3:37
trace elements
basalts, B9:59, 62
black shale, B10:5, 15–16
fine-grained sediments, B8:60–63
seafloor and sill, B14:32
vs. depth, A3:309

Triassic, Upper
rift systems, A1:4–6
rifting phases, B1:6
tuff, altered, photomicrograph, A3:226
tuff, lithologic units, A3:49
turbidites
Albian–Turonian sedimentology, B8:5–7
biostratigraphy, B13:24–25
lithologic units, A3:35–37, 43–44, 49–50, 56, 59–60; B3:17
photograph, A1:65; A3:131, 139, 142, 155, 165, 170, 172, 200, 205
predicted of sill/sediment contacts, A3:357
seafloor and sill, B14:32
vs. depth, A3:309

trace elements/aluminum ratio, black shale, B10:16
transsects
basement, A1:6–7
maps, A1:45–46
transition zones
rift systems, A1:5–6
structural asymmetries, A1:56–57
turbidity currents
biostratigraphy, B13:19–25
lithologic units, A1:14; A3:25, 30, 38–39
lithostratigraphy, A3:57–63
paleoflow directions, B3:1–27
photograph, A3:204–205, 211–212

**Turonian**
- biostratigraphy, A3:86; B13:9–11
geochemistry, A1:20
lithologic units, A1:14; A3:36–58, 61–63
paleoenvironment, A1:17; B13:21–22
postrift sedimentation, B1:28–31
remanent magnetization, A1:19
sedimentation rates, A3:89
sedimentology, B8:5–8
See also Cenomanian–Turonian interval; Cenomanian/Turonian boundary

**Lower Turonian**
- biostratigraphy, A3:79, 81
comparison at Site 1276 and Site 398, A1:27

**U**
- U reflection
  - basement isopach maps, A1:52
  - seismic profiles, B1:54
  - sill injection, B1:22
  - synthetic seismograms, A1:31
ultramafics, tectonized altered, lithologic units, A1:22–23
unconformities
  - Albian, B1:13
  - biostratigraphy, A3:74
  - comparison at Site 1276 and Site 398, A1:27–28
  - lithologic units, A3:39
  - photograph, A3:144
  - rifting, B1:11
See also Avalon unconformity
undercompacted systems, high porosity and low velocity mudstone, A3:101
unroofing, rift-to-drift models, B2:10–11
uplifts, tectonic models, B9:30–31
upwelling, productivity, B8:17
uranium, black shale, B8:16; B10:5

**V**
- Valanginian
  - lithologic units, A3:28
  - rifting phases, B1:9–11
  - synrift sedimentation, B1:25–27
vanadium
  - basalt flows, B9:16
  - black shale, B8:16; B10:5
  - fine-grained sediments, B8:14
  - lithologic units, A3:54
  - oceanic anoxic events, A3:98
  - vs. depth, B8:54
  - vs. titanium, B9:57, 60
vanadium/aluminum ratio
  - oceanic anoxic events, A3:98
  - vs. depth, A3:280
veins
  - lithologic units, A1:22
  - mantle exhumation, B1:14–15
  - anastomosing, lithologic units, B9:11–13
  - anastomosing calcite and talc, photograph, A4:25
  - calcite
    - fluid inclusions, B5:13–14
    - lithologic units, B9:7–8
    - photograph, A3:238; A4:20, 27–28; B9:48
  - calcite + pyrite, sill/sediment contacts, A3:66
  - folded subvertical, photograph, A3:244
  - magmatic, lithologic units, A4:8
  - plagioclase magmatic, photograph, A4:28
velocity
  - igneous rocks, A1:24
  - sediments, A1:21
  - sediment/sill contacts, A3:294
  - vs. carbonate content, A3:292
  - vs. depth, A1:74–75; A3:289, 303; A4:32; B7:16; B14:23–25
  - vs. two-way traveltime, B14:27–30
See also compressional wave velocity
  - velocity, x-direction
    - sill/sediment contacts, A3:294
    - vs. carbonate content, A3:293
    - vs. depth, A3:289–294, 303, 308; B14:22, 27
  - velocity, y-direction, vs. depth, A3:290–291, 308
  - velocity, z-direction
    - histograms, A3:310
    - vs. depth, A3:290–291, 308; B14:22
  - velocity anisotropy, vs. depth, A3:295–296
  - vermiculite, X-ray diffraction data, A3:237
  - Verwey transition, Cretaceous, B15:9
  - vesicles, photomicrograph, A3:174
Vigo Seamount, seismic and sedimentary succession, A1:25–26
volcanic ash, altered, X-ray diffraction data, A3:237
volcanic ash, lithologic units, A3:49
volcanic fragments
  - Paleocene, B2:9
  - photomicrograph, B2:35
volcanic fragments, tachylitic, photomicrograph, B2:33
volcanic glass
  - diabase, A1:15
  - lithologic units, A3:28
  - sill zoning, A3:67
volcanic glass, altered, photomicrograph, B2:33
volcaniclastics
  - deposition, B8:18
  - lithologic units, A1:22; B9:5–14, 32
  - Paleocene, B4:7–8
  - photomicrograph, B9:47–52
  - photomicrograph, A3:152; B9:53
  - postrift sedimentation, B1:30–31
  - rift-to-drift models, B2:10–11
volcanism, basaltic, tectonic models, B9:29

**W**
- wavy laminations, lithologic units, A3:33–34
weathering profile, vs. depth, A1:75
Whale Basin, riftting phases, B1:6

X
X-ray diffraction data
fine-grained sediments, A3:52–55
Site 1276, A3:318–322
X-ray imaging, structures, B6:1–21

Y
Ypresian, biostratigraphy, A3:85
yttrium
basalt flows, B9:16
fine-grained sediments, B8:14
lower Campanian–upper Paleocene sedimentology, B8:10
sills, A3:68
vs. zirconium, A3:251
See also niobium/yttrium ratio; niobium-zirconium- yttrium system; titanium-zirconium-yttrium system; zirconium/yttrium ratio

Z
zeolites
hydrothermal alteration, A3:57
lithologic units, A3:24

<table>
<thead>
<tr>
<th>TAXONOMIC INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>A</strong></td>
</tr>
<tr>
<td>Abathomphalus mayaroensis, Site 1276, A3:80–81</td>
</tr>
<tr>
<td>Abathomphalus mayaroensis Zone, Site 1276, A3:81; B13:12</td>
</tr>
<tr>
<td>Acaenolithus cenomanicus, Site 1276, B13:9, 50</td>
</tr>
<tr>
<td>Acarinina bullbrooki, Site 1276, A3:80</td>
</tr>
<tr>
<td>Acarinina primitiva, Site 1276, A3:80</td>
</tr>
<tr>
<td>achlyostaurion, Rhagodiscus, Site 1276, A3:79</td>
</tr>
<tr>
<td>Achomosphaera alcicornu, Site 1276, A3:86</td>
</tr>
<tr>
<td>acutus, Lithraphidites, Site 1276, A3:79; B13:8–9, 50</td>
</tr>
<tr>
<td>Adnatospheridium multispinosum, Site 1276, A3:85</td>
</tr>
<tr>
<td>aegyptiaca, Globotruncana, Site 1276, A3:81; B13:11</td>
</tr>
<tr>
<td>aquea, Morozovella, Site 1276, A3:80; B13:15</td>
</tr>
<tr>
<td>Ahmuellerella octoradiata, Site 1276, B13:10, 21, 50</td>
</tr>
<tr>
<td>alanii, Fasciculithus, Site 1276, B13:15</td>
</tr>
<tr>
<td>alatum, Xiphophorum, Site 1276, A3:86</td>
</tr>
<tr>
<td>alatus, Lithraphidites, Site 1276, B13:7, 49</td>
</tr>
<tr>
<td>albeari, Igorina, Site 1276, A3:80; B13:15</td>
</tr>
<tr>
<td>albianus, Axopodorhabdus, Site 1276, A3:79; B11:3; B13:8, 50</td>
</tr>
<tr>
<td>albiensis, Hayesites, Site 1276, A3:79–80; B11:4; B13:7, 49</td>
</tr>
<tr>
<td>alcicornu, Achomosphaera, Site 1276, A3:86</td>
</tr>
<tr>
<td>Aliscocysta circumtabulata, Site 1276, A3:86</td>
</tr>
<tr>
<td>Aliscocysta margarita, Site 1276, A3:86</td>
</tr>
<tr>
<td>Aliscocysta reticulata, Site 1276, A3:86</td>
</tr>
<tr>
<td>altus, Chiasmolithus, Site 1276, A3:75; B13:18</td>
</tr>
<tr>
<td>Ammobiaculites spp., Site 1276, A3:84</td>
</tr>
<tr>
<td>Ammodiscus cretaceus, Site 1276, B12:8</td>
</tr>
<tr>
<td>Ammodiscus latus, Site 1276, B12:8</td>
</tr>
<tr>
<td>Ammodiscus spp., Site 1276, A3:83–84; B12:2–3; B13:19</td>
</tr>
<tr>
<td>amoenum, Phthanoperidinium, Site 1276, A3:85</td>
</tr>
<tr>
<td>Amphipyndax spp., Site 1276, A3:88</td>
</tr>
<tr>
<td>amplectens, Reticulophragmium, Site 1276, B12:2–3, 8</td>
</tr>
<tr>
<td>anarrhopus, Sphenolithus, Site 1276, B13:15</td>
</tr>
<tr>
<td>anartios, Discoaster, Site 1276, B13:15</td>
</tr>
<tr>
<td>anthropora, Reinhardtites, Site 1276, B13:10–11</td>
</tr>
<tr>
<td>appenminica, Rotalipora, Site 1276, A3:82; B13:8</td>
</tr>
<tr>
<td>aprica, Whiteinella, Site 1276, A3:81; B13:10</td>
</tr>
<tr>
<td>Aragonia velascoensis, Site 1276, A3:84</td>
</tr>
<tr>
<td>araneus, Discoaster, Site 1276, B13:15–16, 52</td>
</tr>
<tr>
<td>araneus, Discoaster cf. Discoaster, Site 1276, B13:52</td>
</tr>
<tr>
<td>archaeocretacea, Whiteinella, Site 1276, A3:82; B13:10</td>
</tr>
<tr>
<td>Archaeodictyomitra spp., Site 1276, A3:88</td>
</tr>
<tr>
<td>Areoligera semicirculara, Site 1276, A3:85</td>
</tr>
<tr>
<td>Areoligera senonensis, Site 1276, A3:85</td>
</tr>
<tr>
<td>Areosphaeridium dictyoplokum, Site 1276, A3:85</td>
</tr>
<tr>
<td>Arkhangelskiella cymbiformis, Site 1276, A3:78; B13:11</td>
</tr>
<tr>
<td>Arkhangelskiella maastrichtiana, Site 1276, A3:78</td>
</tr>
<tr>
<td>asper, Rhagodiscus, Site 1276, A3:79; B13:50</td>
</tr>
<tr>
<td>Aspidolithus parcus, Site 1276, B13:11</td>
</tr>
<tr>
<td>asterigum, Oligosphaeridium, Site 1276, A3:86</td>
</tr>
<tr>
<td>Astrononion novozealandicum, Site 1276, A3:83</td>
</tr>
<tr>
<td>asymetricus, Cruciplacolithus, Site 1276, B13:13, 51</td>
</tr>
<tr>
<td>australinum, Palaeocystodinium, Site 1276, A3:86</td>
</tr>
<tr>
<td>Axopodorhabdus albianus, Site 1276, A3:79; B11:3; B13:8, 50</td>
</tr>
</tbody>
</table>
barbadiensis, Discoaster, Site 1276 • cymbiformis, Arkhangelskiella, Site 1276

B

barbadiensis, Discoaster, Site 1276, A3:52
barnesiae, Watznaueria, Site 1276, A3:12
bartonensis, Cerebrocysta, Site 1276, A3:85
basquensis, Pemna, Site 1276, A3:75; B13:18
Bathyphysphon spp., Site 1276, A3:83
batilliformis, Braarudosphaera, Site 1276, B13:7
bentonensis, Globigerinelloides, Site 1276, A3:82; B13:8
Biangularithus sparsus, Site 1276, A3:77; B13:12, 51
bidens, Chiasmolithus, Site 1276, A3:77; B13:14, 51
bigelowii, Braarudosphaera, Site 1276, A3:77; B13:12
bijugatus, Zygohabitus, Site 1276, A3:76; B13:15–16, 18
binodosus, Discoaster, Site 1276, B13:18, 52
Biscutum bloom, Site 1276, A1:18
Biscutum constricta, Site 1276, B13:7, 19
Biscutum spp., Site 1276, B13:19
bisecta, Reticulofenestra, Site 1276, A3:75
bisulcus, Prinsius, Site 1276, B13:51
bitectus, Fasciculithus, Site 1276, B13:14–15
Biticinella breggiensis, Site 1276, A3:82; B13:8
Blackites rectus, Site 1276, B13:18
Blackites spinosus, Site 1276, A3:75; B13:18
Bolivina spp., Site 1276, A3:84; B13:20
Bomololithus elegans, Site 1276, B13:14
Braarudosphaera batilliformis, Site 1276, B13:7
Braarudosphaera bigelowii, Site 1276, A3:77; B13:12
Braarudosphaera stenoretha, Site 1276, A3:79
bramlettei, Rhomboaster, Site 1276, B13:16, 52
bramlettei, Tribrachiatus, Site 1276, A3:76
breggiensis, Biticinella, Site 1276, A3:82; B13:8
Broninsonia cf. Broninsonia viriosa, Site 1276, B13:49
Broninsonia parva constricta, Site 1276, A3:78
Broninsonia spp., Site 1276, A3:78
Bulimina tuxpanensis, Site 1276, A3:83
bullbrooki, Acrarina, Site 1276, A3:80
buxtorfi, Planomalina, Site 1276, A3:82; B13:8

C

califorunicum, Damassadinium, Site 1276, A3:86
Callaiosphaeridium cf. Callaiosphaeridium trycherium, Site 1276, A3:87
cancellata, Cyclammina, Site 1276, A3:83
caniculata, Dicarinella cf. Dicarinella, Site 1276, A3:81; B13:10
carniolensis, Lithraphidites, Site 1276, A3:79
carpatella, Carpatella cornuta, Site 1276, A3:86
carpodinium granulatum, Site 1276, A3:87
carpodinium obliquicostatum, Site 1276, A3:87
caudammina gigantea, Site 1276, A3:84
cenomanicus, Acaenolithus, Site 1276, B13:9, 50
cerebrocta bartonensis, Site 1276, A3:85
cerodinium diebeli, Site 1276, A3:86
cerodinium wardense, Site 1276, A3:85
carapids, Charlesdownia clathrata, Site 1276, A3:85
charlesdowniae coleothrypta, Site 1276, A3:85
chatangiella verrucosa, Site 1276, A3:86
chiasmolithus altus, Site 1276, A3:75; B13:18
chiasmolithus bidens, Site 1276, A3:77; B13:14, 51
chiasmolithus consueitus, Site 1276, B13:14

di:10

Chiasmolithus danicus, Site 1276, A3:77; B13:51
Chiasmolithus expansus, Site 1276, B13:18
Chiasmolithus gigas, Site 1276, B13:17
Chiasmolithus grandis, Site 1276, A3:75; B13:18
Chiasmolithus solitus, Site 1276, A3:75; B13:18
chiastia, Helenea, Site 1276, A3:79
Chiahaodinium vestitum, Site 1276, A3:87
Cibicidoides praemandulius, Site 1276, A3:83
Cibicidoides spp., Site 1276, A3:83; B1:22
circularabulata, Alisocysta, Site 1276, A3:86
cladodea, Dinopterygium, Site 1276, A3:87
clathrata, Charlesdowniae, Site 1276, A3:85
Clauvicroderrberella simplex, Site 1276, A3:82
Coccolithus formosus, Site 1276, A3:75; B13:18
Coccolithus pelagicus, Site 1276, B13:13, 18
Coccolithus spp., Site 1276, B13:18
coleothrypta, Charlesdownia, Site 1276, A3:85
colligerum, Diphys, Site 1276, A3:85
columnata, Prediscosphaera, Site 1276, A3:80; B11:4; B13:6–7, 49
compactus, Helicolithus, Site 1276, A3:79
condylodys, Dracodium, Site 1276, A3:85
conica, Globotruncana, Site 1276, A3:80
conicotruncana, Morozovella, Site 1276, A3:80; B13:14
conispinum, Litotrophicidium, Site 1276, A3:87
connicicus, Neochiastozygus, Site 1276, B13:51
constans, Biscutum, Site 1276, B13:7, 19
comunetus, Chiasmolithus, Site 1276, B13:14
cortortus, Tribrachiatus, Site 1276, A3:76; B13:16, 52
contusa, Contusotruncanana, Site 1276, A3:80–81
Contusotruncanana contusa, Site 1276, A3:80–81
cornuta, Carpatella, Site 1276, A3:86
Corollithion kennedyi, Site 1276, A3:79; B11:3; B13:8–9, 50
coronatum, Stephodinium, Site 1276, A3:87
corpulentus, Paratrochamminoides cf. Paratrochamminoides, Site 1276, B12:2–3
crtaceae, Guembelitria, Site 1276, A3:81; B13:13
cratae, Ammodiscus, Site 1276, B12:8
Cretarthabidus loriei, Site 1276, B13:9, 50
Cribrocorona gallica, Site 1276, A3:78; B13:11
Cribrospahera dariae, Site 1276, A3:78; B13:11
cruciiformis, Cruciplacolithus, Site 1276, B13:17
Cruciplacolithus asymmetrics, Site 1276, B13:13, 51
Cruciplacolithus cruciformis, Site 1276, B13:17
Cruciplacolithus edwardsii, Site 1276, B13:13
Cruciplacolithus intermedii, Site 1276, B13:13, 51
Cruciplacolithus primus, Site 1276, A3:77; B13:12–13, 51
Cruciplacolithus tenuis, Site 1276, B13:13
cushmani, Rotalilpora, Site 1276, A3:81–82; B13:10
cuspis, Rhomboaster, Site 1276, A3:76
Cyclagelosphaera reinhardtii, Site 1276, A3:77; B13:12–13
Cyclammina cancellata, Site 1276, A3:83
Cyclocorticollis floridanus, Site 1276, B13:18
Cyclocorticollis obtusus, Site 1276, B13:18
Cyclonephelium membraniporum, Site 1276, A3:86
Cylindricalithus nudus, Site 1276, A3:79; B11:4; B13:7
cymbiformis, Arkhangelskiella, Site 1276, A3:78; B13:11
**D**

**D**amassadinium californicum, Site 1276, A3:86
daniae, Cribroshaera, Site 1276, A3:78; B13:11
danica, Sullivania, Site 1276, B13:13–14
danicus, Chiastolithus, Site 1276, A3:77; B13:51
deani, Florentinia, Site 1276, A3:86
decassata, Micula, Site 1276, A3:78; B13:12
deflandrei, Discoaster, Site 1276, B13:18
defliense, Spongodinium, Site 1276, A3:86
defloriensis, Hebelberella, Site 1276, A3:82
defloriensis, Praeglobotruncana, Site 1276, A3:82
defloriensis, Praeglobotruncana, Site 1276, A3:82; B13:8
diastypus, Discoaster, Site 1276, A3:76; B13:16, 52
Dicharinella cf. Dicharinella canaliculata, Site 1276, A3:81; B13:10
Dicharinella imbricata, Site 1276, A3:81; B13:10
dicycola, Reticulofenestra, Site 1276, B13:18
Dictyomitra spp., Site 1276, A3:88
dictyoplakos, Acoreospherium, Site 1276, A3:85
dilebii, Cerodinium, Site 1276, A3:86
dimorphous, Prinsius, Site 1276, B13:13
Dinopterygium cladoides, Site 1276, A3:87
Diphyes colligerum, Site 1276, A3:85
Discoaster anartios, Site 1276, B13:15
Discoaster araneus, Site 1276, B13:15–16, 52
Discoaster barbadiensis, Site 1276, B13:52
Discoaster binodosus, Site 1276, B13:18, 52
Discoaster cf. Discoaster araneus, Site 1276, B13:52
Discoaster deflandrei, Site 1276, B13:18
Discoaster diastypus, Site 1276, A3:76; B13:16, 52
Discoaster falcatus, Site 1276, B13:52
Discoaster lodoensis, Site 1276, A3:75; B13:17
Discoaster mahmoudii, Site 1276, B13:16, 52
Discoaster multiradiatus, Site 1276, A3:77; B13:14, 16–17, 52
Discoaster nobilis, Site 1276, B13:15, 52
Discoaster saipanensis, Site 1276, B13:19
Discoaster salisburyensis, Site 1276, B13:16, 52
Discoaster spp., Site 1276, A3:76; B13:52
Discoaster sublodoensis, Site 1276, A3:75; B13:17
Discoaster tani nodifer, Site 1276, B13:17
Disscorhabdus rotatorius, Site 1276, B13:7, 19
Draco, Rhombodinium, Site 1276, A3:85
Dracocinum condylos, Site 1276, A3:85
dubius, Neococcolithes, Site 1276, B13:17

echinatum, Phthianoperidinium, Site 1276, A3:85
edwardsii, Cruciplacolithus, Site 1276, B13:13
Eiffellithus cf. Eiffellithus eximius, Site 1276, B13:9
Eiffellithus cf. Eiffellithus monochia, Site 1276, A3:79
Eiffellithus eximius, Site 1276, A3:78–79; B13:10, 50
Eiffellithus? hancockii, Site 1276, B13:7, 49
Eiffellithus monochia, Site 1276, A3:79; B11:3; B13:8
Eiffellithus turris eiffeli, Site 1276, A3:79; B11:3; B13:8
elegans, Bomolithus, Site 1276, B13:14
Ellipsoidolithus lajollaensis, Site 1276, A3:75
Ellipsoidolithus macellus, Site 1276, A3:75; B13:14
Emeadocysta pectiniformis, Site 1276, A3:85
Epelidosphaeridium spinosa, Site 1276, A3:86
Eprolithus eptapetalus, Site 1276, B13:10, 50
Eprolithus floralis, Site 1276, A3:79
Eprolithus moratus, Site 1276, A3:79
Eprolithus octopetalus, Site 1276, A3:79; B13:9, 50
Eprolithus spp., Site 1276, B13:9, 21
eptapetalus, Eprolithus, Site 1276, B13:10, 50
Ericsonia subpertusa, Site 1276, B13:13–14, 51
eugubina, Parvuloroglobalitina, Site 1276, A1:18; A3:81; B13:13
euphratis, Helicosphaera, Site 1276, B13:18
eximius, Eiffellithus, Site 1276, A3:78–79; B13:10, 50
eximius, Eiffellithus cf. Eiffellithus, Site 1276, B13:9
expansus, Chiastolithus, Site 1276, B13:18

**F**
falcatus, Discoaster, Site 1276, B13:52
falsostaurti, Globotruncanca, Site 1276, A3:81
falsostaurti, Globotruncanca cf. Globotruncanca, Site 1276, B13:12
Fasiculithus alanii, Site 1276, B13:15
Fasiculithus bitectus, Site 1276, B13:14–15
Fasiculithus cf. Fasiculithus ulii, Site 1276, B13:51
Fasiculithus involutus, Site 1276, B13:51
Fasiculithus magnus, Site 1276, A3:77
Fasiculithus schaumbii, Site 1276, B13:15
Fasiculithus spp., Site 1276, B13:14–16, 51
Fasiculithus thomasii, Site 1276, B13:15
Fasiculithus tonii, Site 1276, B13:15, 51
Fasiculithus tympaniformis, Site 1276, A3:76; B13:14
Fasiculithus ulii, Site 1276, A3:77; B13:14
firthii, Psykstosphaera, Site 1276, A3:78; B13:11–12
floralis, Epololithus, Site 1276, A3:79
Florentinia deanei, Site 1276, A3:86
floridae, Cyclicarcolithus, Site 1276, A3:18
formosus, Coccolithus, Site 1276, A3:75; B13:18
frequens, Nepholithus, Site 1276, A3:78; B13:11–12
fructiosa, Racemiguembelina, Site 1276, A3:80–81
fulgens, Nammotetris, Site 1276, A3:75
furcatus, Marthasterites, Site 1276, A3:78; B13:10, 50

**G**
gallica, Cribrocorona, Site 1276, A3:78; B13:11
Gansserina gansseri Zone, Site 1276, B13:11
Gartnerago namum, Site 1276, B13:9, 50
Gartnerago segmentatum, Site 1276, A3:79
Gartnerago spp., Site 1276, B13:21
Gartnerago theta, Site 1276, B13:9, 50
gartneri, Quadrum, Site 1276, A3:78–79; B13:10, 50
Gavelinella cf. Gavelinella intermedia, Site 1276, A3:84
Gavelinella spp., Site 1276, A3:84; B13:20
giantea, Caudammina, Site 1276, A3:84
gigas, Chiasmolithus, Site 1276, B13:17
Glyptotheca semitecta, Site 1276, A3:85
Globanomalina pseudomenardii, Site 1276, A3:80; B13:14–15
Globigerinatheka cf. Globigerinatheka index, Site 1276, A3:80
Globigerinelloides bentonensis, Site 1276, A3:82; B13:8
Globigerinelloides spp., Site 1276, A3:82
Globigerinelloides ultramicus, Site 1276, A3:82
Globotruncanella aegyptiaca, Site 1276, A3:81; B13:11
Globotruncanella aegyptiaca Zone, Site 1276, B13:11
Globotruncanella cf. Globotruncanella falsostuerti, Site 1276, B13:12
Globotruncanella conica, Site 1276, A3:80
Globotruncanella falsostuerti, Site 1276, A3:81
Globotruncanella orientalis, Site 1276, A1:18
Globotruncanella stuarti, Site 1276, A3:80
Globotruncanella ventricosa, Site 1276, A3:81; B13:11
globotruncanainoide, Rotalipora, Site 1276, B13:8
Glomospira gordialis, Site 1276, B12:2
Glomospira spp., Site 1276, A3:84; B12:2; B13:19
gordialis, Glomospira, Site 1276, B12:2
grandis, Chiasmolithus, Site 1276, A3:75; B13:18
granulatum, Carpodinium, Site 1276, A3:87
Guembelitria cretacea, Site 1276, A3:81; B13:13
Guembelitria spp., Site 1276, A1:18; A3:82
Gyroidina spp., Site 1276, A3:84
Gyroidinoides cf. Gyroidinoides nitidus, Site 1276, A3:84; B13:20
Gyroidinoides spp., Site 1276, A3:83

H
hancockii, Eiffellithus?, Site 1276, B13:7, 49
Haplocysta peridictya, Site 1276, A3:86
Hayesites albiensis, Site 1276, A3:79–80; B11:4; B13:7, 49
Hayesites irregularis, Site 1276, B13:7, 49
Hedbergella cf. Hedbergella rischi, Site 1276, B13:7
Hedbergella delrioensis, Site 1276, A3:82
Hedbergella libycia, Site 1276, A3:82; B13:8
Hedbergella planispina, Site 1276, A3:82–83; B13:7
Hedbergella planispina Zone, Site 1276, B13:7
Hedbergella spp., Site 1276, A3:82
Helena chiastia, Site 1276, A3:79
Helicotithus compactus, Site 1276, A3:79
Helicotithus trabeculatus, Site 1276, B13:7, 49
Helicosphaera ephratis, Site 1276, B13:18
Heliotithus kleinpellii, Site 1276, B13:14
Heliotithus riedelii, Site 1276, B13:14
Helvetoglobotruncanella helvetica, Zone, Site 1276, B13:10
Hemiplacophora semilunifera, Site 1276, A3:85
Heteraulacocytha leptalea, Site 1276, A3:85
Heterohelix spp., Site 1276, A3:82
Hyperammina spp., Site 1276, A3:83

I
Igorina albeari, Site 1276, A3:80; B13:15
imbricata, Dicarinella, Site 1276, A3:81; B13:10
index, Globigerinatheca cf. Globigerinatheca, Site 1276, A3:80
inflata, Rhabdosphaera, Site 1276, A3:75; B13:17–18
infrasoroiodes, Palaeoehystrichophora, Site 1276, A3:86
inornata, Sonriasphaera, Site 1276, A3:86
intermedia, Gavelinella cf. Gavelinella, Site 1276, A3:84
intermedium, Quadrum, Site 1276, A3:79; B13:9
intermedium, Cruciplacolithus, Site 1276, B13:13, 51
inversus, Markallus, Site 1276, A3:77; B13:12–13, 18
involutus, Fasciculithus, Site 1276, B13:51
irregularis, Hayesites, Site 1276, B13:7, 49
irregularis/albiensis group, Rucinolithus, Site 1276, B13:7
Isthmiolithus recurvus, Site 1276, A3:75
K
Kamptnerius magnificus, Site 1276, A3:78; B13:10, 12
kenndeyi, Corollithion, Site 1276, A3:79; B11:3; B13:8–9, 50
kleinpellii, Helolithus, Site 1276, B13:14
L
Lagenammina spp., Site 1276, A3:84
lajollaensis, Ellipsolithus, Site 1276, A3:75
Lanternithus minutus, Site 1276, B13:12, 18
latus, Ammodiscus, Site 1276, B1:8
Lentinia serrata, Site 1276, A3:85
leptalea, Heteraulacocytha, Site 1276, A3:85
levis, Reinhardtites, Site 1276, A3:78; B13:11
libya, Hedbergella, Site 1276, A3:82; B13:8
Lithastrinus septenarius, Site 1276, A3:78; B13:10, 50
Lithraphidites acutus, Site 1276, A3:79; B13:8–9, 50
Lithraphidites alattis, Site 1276, B13:7, 49
Lithraphidites carniolensis, Site 1276, A3:79
Lithraphidites quadratus, Site 1276, A3:78; B13:11
Litopsphaeridium conispinum, Site 1276, A3:87
Litopsphaeridium siphoniphorum, Site 1276, A3:86–87
lodoensis, Discoaster, Site 1276, A3:75; B13:17
loriei, Cretarhabdus, Site 1276, B13:9, 50
Lucianorhabdus maleformis, Site 1276, B13:50
M
maastrichtiana, Arkhangelskiella, Site 1276, A3:78
macellus, Ellipsolithus, Site 1276, A3:75; B13:14
magnificus, Kamptnerius, Site 1276, A3:78; B13:10, 12
magnus, Fasciculithus, Site 1276, A3:77
mahmoudii, Discoaster, Site 1276, B13:16, 52
maleformis, Lucianorhabdus, Site 1276, B13:50
marginata, Alisocysta, Site 1276, A3:86
Marginotruncanena renzi, Site 1276, A3:81; B13:10
Marginotruncanena sigali, Site 1276, A3:81; B13:10
Markallus inversus, Site 1276, A3:77; B13:12–13, 18
Markallus panis, Site 1276, B13:13, 51
Marthasterites fucatus, Site 1276, A3:78; B13:10, 50
martini, Prinsius, Site 1276, B13:13–14
mayaorenis, Abathomphalus, Site 1276, A3:80–81
mazaganensis, Tehamadinium, Site 1276, A3:86
membranipherorum, Cyclonephelium, Site 1276, A3:86
Micula decussata, Site 1276, A3:78; B13:12
Micula murus, Site 1276, A3:78; B13:11, 22
Micula prinsii, Site 1276, A3:78; B13:11
Micula prinsii Zone, Site 1276, A3:77; B13:12
minutus, Lanternithus, Site 1276, B13:12, 18
modestus, Neochiastozygus, Site 1276, B13:13
monchiae, Eiffellithus, Site 1276, A3:79; B11:3; B13:8
monchiae, Eiffellithus cf. Eiffellithus, Site 1276, A3:79
moratus, Epolithus, Site 1276, A3:79
moriformis, Sphenolithus, Site 1276, B13:16, 18
Morozovella aequa, Site 1276, A3:80; B13:15
VOLUME 210 TAXONOMIC INDEX

Morozovella cf. Morozovella spinulosa, Site 1276 • Quadrum intermedium, Site 1276

Morozovella cf. Morozovella spinulosa, Site 1276, A3:80
Morozovella conicotruncana, Site 1276, A3:80; B13:14
mouладеi, Zeugrhhabdotus, Site 1276, B13:19
multiplus, Octolithus, Site 1276, B13:12
multiradiatus, Discaster, Site 1276, A3:77; B13:14, 16–17, 52
multiSpinosum, Adhatosphaeridium, Site 1276, A3:85
murus, Micula, Site 1276, A3:78; B13:11, 22

N
Nannoconus steinmannii, Site 1276, A3:79
Nannoconus truitti, Site 1276, A3:79
Nannoconus wassallii, Site 1276, A3:79
Nannotetrina fulgens, Site 1276, A3:75
namum, Gartnerago, Site 1276, B13:9, 50
Neobadiscatum parvulum, Site 1276, A3:77–78; B13:12–13
Neobadiscatum romenii, Site 1276, A3:77–78; B13:12–13
Neoichiastogygus comnicinus, Site 1276, B13:51
Neoichiastogygus modestus, Site 1276, B13:13
Neoecollithus dubius, Site 1276, B13:17
neocrassus, Neocrepidolithus, Site 1276, A3:77
Neocrepidolithus neocrassus, Site 1276, A3:77
Neocrepidolithus spp., Site 1276, B13:12–13
Nephrolithis frequens, Site 1276, A3:78; B13:11–12
nitidus, Gyroidinoides cf. Gyroidinoides, Site 1276, A3:84; B13:20
nobilis, Discaster, Site 1276, B13:15, 52
Nonionella spp., Site 1276, A3:83
novozealandicum, Astronomion, Site 1276, A3:83
nudus, Cylindricalithus, Site 1276, A3:79; B11:4; B13:7
Nutallilides truemppyi, Site 1276, B12:2, 8

O
oamarioensis, Reticulofoenestra, Site 1276, A3:75
obliquasterotus, Carpodinium, Site 1276, A3:87
obratus, Cyclocaryolithus, Site 1276, B13:18
Octolithus multipus, Site 1276, B13:12
octopetalus, Eropolithus, Site 1276, A3:79; B13:9, 50
octoaradita, Ahmuellerella, Site 1276, B13:10, 21, 50
Oligosphaeridium asterigma, Site 1276, A3:86
Oligosphaeridium pulcherrimum, Site 1276, A3:86
orientalis, Globotruncanra, Site 1276, A3:86
orionatus, Tranolithus, Site 1276, A3:80; B11:3; B13:7–8, 49
orthostylus, Trirachiatus, Site 1276, A3:76; B13:16–17, 52
Ovolidinium verrucosum, Site 1276, A3:86–87

P
Palaeocystodinium australinum, Site 1276, A3:86
Palaeoeulithochora infusorioides, Site 1276, A3:86
Palaeoperidinium pyrophorum, Site 1276, A3:86
panis, Markaliss, Site 1276, B13:13, 51
paperlistum, Parna, Site 1276, A3:75; B13:18
Parasubbotina pseudobulloides, Site 1276, A3:81; B13:14
Paratrochamminoides cf. Paratrochamminoides corpulentus, Site 1276, B12:2–3
parca constricta, Broinsonia, Site 1276, A3:78
parcus, Aspidolithus, Site 1276, B13:11

Parvaluruglobigerina eugubina, Site 1276, A1:18; A3:81; B13:13
parvalum, Neobadiscatum, Site 1276, A3:77–78; B13:12–13
pectiniformes, Enneadocysa, Site 1276, A3:85
pelagicus, Coocollithus, Site 1276, B13:13, 18
Pemna basquensis, Site 1276, A3:75; B13:18
Pemna papillatum, Site 1276, A3:75; B13:18
Pemna spp., Site 1276, B13:18
peridictya, Hapscysa, Site 1276, A3:86
pertusus, Toweius cf. Toweius, Site 1276, B13:51
Pervasphaeridium truncatum, Site 1276, A3:86
Phathanoperidinium amoenum, Site 1276, A3:85
Phthanoperidinium echinatum, Site 1276, A3:85
planiispira, Hedbergella, Site 1276, A3:82–83; B13:7
Planoglobulina spp., Site 1276, B13:22
Planomalina buxtorfi, Site 1276, A3:82; B13:8
pleistotypica/jacobi ammonite zone, Site 1276, B13:7
pomeroli, Turborotalia, Site 1276, A3:80
Pontosphera spp., Site 1276, B13:18
Praebulamina spp., Site 1276, A3:84; B13:20
Praeglobotruncanra cf. Praeglobotruncanra praehelevtica, Site 1276, A3:81; B13:10
Praeglobotruncanra delrioensis, Site 1276, A3:82
Praeglobotruncanra praehelevtica, Site 1276, A3:81; B13:10
Praeglobotruncanra stephani, Site 1276, A3:82; B13:8
Praehedbergella delrioensis, Site 1276, A3:82; B13:8
prahevlelevtica, Praeglobotruncanra, Site 1276, A3:81; B13:10
prahevlelevtica, Praeglobotruncanra cf. Praeglobotruncanra, Site 1276, A3:81; B13:10
praemundulis, Cibicidoides, Site 1276, A3:83
praeanoriantus, Tranolithus, Site 1276, B13:7, 49
praeventicinensis, Ticina, Site 1276, A3:82
Prediscosphaera columnata, Site 1276, A3:80; B11:4; B13:6–7, 49
Prediscosphaera spinosa, Site 1276, B13:7, 49
Prediscosphaera stoveri, Site 1276, B13:12
primitiva, Acarina, Site 1276, A3:80
primitivum, Serbbsisicum, Site 1276, B13:49
primula, Ticina, Site 1276, A3:82–83; B13:8
primus, Cruciplacolithus, Site 1276, A3:77; B13:12–13, 51
primus, Sphenolithus, Site 1276, B13:14
primus, Micula, Site 1276, A3:78; B13:11
Prinsius bisulcus, Site 1276, B13:51
Prinsius dimorphus, Site 1276, B13:13
Prinsius martini, Site 1276, B13:13–14
Prinsius tenicum, Site 1276, B13:13
pseudobulloides, Parasubbotina, Site 1276, A3:81; B13:14
pseudomenardii, Globoanomalina, Site 1276, A3:80; B13:14–15
Pseudotextularia spp., Site 1276, B13:22
Psykhosphaera firthii, Site 1276, A3:78; B13:11–12
pulcherrimum, Transversopontis, Site 1276, B13:18
pulcherrimum, Oligosphaeridium, Site 1276, A3:86
pyrophorum, Palaeoperidinium, Site 1276, A3:86

Q
quadratrus, Lithostratides, Site 1276, A3:78; B13:11
Quadrum gartneri, Site 1276, A3:78–79; B13:10, 50
Quadrum intermedium, Site 1276, A3:79; B13:9
R
Racemiguembelina fructicosa, Site 1276, A3:80–81
radius, Sphenolithus, Site 1276, B13:17–18
raynaudi, Ticinella, Site 1276, A3:82
rectus, Blackites, Site 1276, B13:18
Recurvoideos spp., Site 1276, B12:2
recurvus, Isthmolithus, Site 1276, A3:75
reinhardtii, Cyclagelosphaera, Site 1276, A3:77; B13:12–13
Reinhardtites anthrophorus, Site 1276, B13:10–11
Reinhardtites levis, Site 1276, A3:78; B13:11
renzi, Marginotruncana, Site 1276, A3:81; B13:10
reticulata, Alisocysta, Site 1276, A3:86
reticulata, Reticulofenestra, Site 1276, B13:19
Reticulofenestra bisecta, Site 1276, A3:75
Reticulofenestra dictyoda, Site 1276, A3:89; B13:10
Reticulofenestra oamarioensis, Site 1276, A3:75
Reticulofenestra reticulata, Site 1276, B13:18
Reticulofenestra scrippsae, Site 1276, B13:18
Reticulofenestra reticulata, Site 1276, A3:76
Reticulofenestra samodurovii, Site 1276, A3:86
Reticulofenestra reticulata, Reticulofenestra, Site 1276, A3:85
Rhabdosphaera inflata, Site 1276, A3:85
Rhabdosphaera primula, Site 1276, A3:86
Reinhardtites anarrhopus, Site 1276, A3:75; B13:17
Reinhardtites septenarius, Litastrinus, Site 1276, A3:78; B13:10, 50
Seribiscutum primitivum, Site 1276, B13:49
serrata, Lentinia, Site 1276, A3:85
S
Saipanensis, Discoaster, Site 1276, B13:19
salissburgensis, Discoaster, Site 1276, B13:16, 52
samodurovii, Reticulofenestra, Site 1276, B13:18
Schackoaina spp., Site 1276, A3:82
Schaubii, Fasciculithus, Site 1276, B13:15
scrippsae, Reticulofenestra, Site 1276, B13:18
segmentatum, Gartnerago, Site 1276, A3:79
semicirculara, Areolgera, Site 1276, A3:85
semilunifera, Hemiplacophora, Site 1276, A3:85
semitecta, Glaphyrocycta, Site 1276, A3:85
senonensis, Areolgera, Site 1276, A3:85
Senonisphaera mornata, Site 1276, A3:86
Senonisphaera rotundata alveoata, Site 1276, A3:86
Septibiscutum primipilum, Site 1276, A3:79
Serrata, Lentinia, Site 1276, A3:85
Sigali, Marginotruncana, Site 1276, A3:81; B13:10
sigmoides, Zeugrhabdotus, Site 1276, B13:12–13
simplex, Clavihedbergella, Site 1276, A3:82
Siphoniphorum, Lithosphaeridium, Site 1276, A3:86–87
Sissinghi, Uniplanarius, Site 1276, B13:10–11
solitus, Chiasmolithus, Site 1276, A3:75; B13:18
sparsus, Biantholithus, Site 1276, A3:77; B13:12, 51
spectabilis, Spiropectammina, Site 1276, A3:84; B12:2–3, 8
Sphenolithus anarrhopus, Site 1276, B13:15
Sphenolithus moriformis, Site 1276, B13:16, 18
Sphenolithus primus, Site 1276, B13:14
Sphenolithus radians, Site 1276, A3:17–18
spineus, Rhombosphaera, Site 1276, B13:16
Spinosa, Epelidosphaeridia, Site 1276, A3:86
Spinosa, Prediscosphaera, Site 1276, B13:7, 49
Spinosa, Blackites, Site 1276, A3:75; B13:18
Spinula, Wetzliella, Site 1276, A3:85
Spinulosa, Morozovella cf. Morozovella, Site 1276, A3:80
Spiropectammina spectabilis, Site 1276, A3:84; B12:2–3, 8
Spiropectammina spp., Site 1276, A3:83
Spongiodinium delitense, Site 1276, A3:86
Steinmanni, Nannoconus, Site 1276, A3:79
Stenorethia, Braarudosphaera, Site 1276, A3:79
stephan, Praeglobotruncana, Site 1276, A3:82; B13:8
Stephodinium coronatum, Site 1276, A3:87
Stoveri, Prediscosphaera, Site 1276, B13:12
Stuarti, Globotruncana, Site 1276, A3:80
Subdistichus, Claustricochaeta, Site 1276, B13:18
Subloodosms, Discocystis, Site 1276, A3:75; B13:17
Subpertusa, Erisconia, Site 1276, B13:13–14, 51
Subthicinensis, Rotalipora, Site 1276, A3:82; B13:8
Sullivania danica, Site 1276, B13:13–14
Suspectum, Trithyrodinium, Site 1276, A3:86
T
Tani nodifer, Discoaster, Site 1276, B13:17
Tehamadinium mazaganensis, Site 1276, A3:86
Tenuiculum, Prinsius, Site 1276, B13:13
Tenuis, Cruciplacolithus, Site 1276, B13:13
Theta, Gartnerago, Site 1276, B13:9, 50
Thomasi, Fasciculithus, Site 1276, B13:15
Thoracosphera bloom, Site 1276, A1:18; A3:77–78, 81; B13:13, 16
Tinicella praeticinensis, Site 1276, A3:82
Tinicella primula, Site 1276, A3:82–83; B13:8
Tinicella raynaudi, Site 1276, A3:82
Tinicella roberti, Site 1276, A3:82; B13:8
tonii, Fasciculithus, Site 1276, B13:15, 51
Toweius cf. Toweius pertusus, Site 1276, B13:51
Toweius spp., Site 1276, B13:13
trabeculatus, Helicolithus, Site 1276, B13:7, 49
Tranolithus orionatus, Site 1276, A3:80; B11:3; B13:7–8, 49
Tranolithus praerionatus, Site 1276, B13:7, 49
Transversopontis pulcheroides, Site 1276, B13:18
Tribrachiatus bramlettei, Site 1276, A3:76
Tribrachiatus contortus, Site 1276, A3:76; B13:16, 52
Tribrachiatus orthostylus, Site 1276, A3:76; B13:16–17, 52
trifidus, Uniplanarius, Site 1276, A3:78; B13:10–11
Trithyrodinium suspectum, Site 1276, A3:86
Trochammina spp., Site 1276, A3:83–84
truempyi, Nuttallides, Site 1276, B12:2, 8
truitti, Nannoconus, Site 1276, A3:79
truncatum, Pervosphaeridium, Site 1276, A3:86
Truncorotaloides rohri, Site 1276, A3:80
trycherium, Callaiosphaeridium cf. Callaiosphaeridium, Site 1276, A3:87
Turborotalia pomeroli, Site 1276, A3:80
turriseiffelii, Eiffellithus, Site 1276, A3:79; B11:3; B13:8
tuxpamensis, Bulimina, Site 1276, A3:83
tympaniformis, Fasciculithus, Site 1276, A3:76; B13:14
U
ulii, Fasciculithus, Site 1276, A3:77; B13:14
ulii, Fasciculithus cf. Fasciculithus, Site 1276, B13:51
ultramicrus, Globigerinelloides, Site 1276, A3:82
umbilica, Reticulofenestra, Site 1276, B13:18
umbilicus, Reticulofenestra, Site 1276, A3:75
Uniplanarius sissinghi, Site 1276, B13:10–11
Uniplanarius trifidus, Site 1276, A3:78; B13:10–11
V
velascoensis, Aragonia, Site 1276, A3:84
ventricosa, Globotruncana, Site 1276, A3:81; B13:11
verrucosa, Chatangiella, Site 1276, A3:86–87
vestitum, Chichaodinium, Site 1276, A3:87
viriosa, Broinsonia cf. Broinsonia, Site 1276, B13:49
W
wardense, Cerodinium, Site 1276, A3:85
wassalii, Nannoconus, Site 1276, A3:79
Watznaueria barnesiae, Site 1276, B13:12
Wetzliella spinula, Site 1276, A3:85
Whiteinella aprica, Site 1276, A3:81; B13:10
Whiteinella archaeocretacea, Site 1276, A3:82; B13:10
Whiteinella archaeocretacea Zone, Site 1276, A3:81; B13:10
Woodringina spp., Site 1276, A1:18; A3:81; B13:13
X
Xiphophorum alatum, Site 1276, A3:86
Xitus spp., Site 1276, A3:88
UC4, Site 1276, B13:9
UC5, Site 1276, B13:9
UC6, Site 1276, B13:10
UC7, Site 1276, A3:79
UC8, Site 1276, A3:79; B13:10
UC9, Site 1276, B13:10
UC10, Site 1276, A3:78; B13:10
UC15, Site 1276, A3:78; B13:10–11
UC15–UC16 interval, Site 1276, A3:78

UC16, Site 1276, B13:11
UC16–UC18 interval, Site 1276, B13:11
UC17, Site 1276, A3:78
UC18–UC19 interval, Site 1276, A3:78
UC20, Site 1276, A3:78; B13:11
UC20a–UC20c interval, Site 1276, A3:78; B13:11
UC20d, Site 1276, A3:77; B13:12

Zygrhablithus bijugatus, Site 1276  
Zygrhablithus bijugatus, Site 1276, A3:76; B13:15–16, 18