January 29, 1985

The accompanying volume is a summary of the preliminary scientific results obtained on Leg 100 of the Ocean Drilling Program. It was assembled from shipboard files by the scientists who participated in the cruise.

This summary was prepared rapidly for the immediate use of the scientists working with Leg 100 samples and does not necessarily represent the final results of Leg 100 or the ultimate conclusions of the shipboard scientists. Material contained in this volume is privileged information and should not be referenced.

The Ocean Drilling Program is conducted using scientific advice provided by JOIDES and is managed by Joint Oceanographic Institutions, Inc. under a contractual arrangement with the National Science Foundation. Texas A&M University is the Science Operator for the Ocean Drilling Program.

Philip D. Rabinowitz

eliam)

William J. Merrell

Louis E Louis E. Garrison, and

Robert B Kidel

Robert B. Kidd

Co-Chief Scientists, Leg 100 Texas A&M University College Station, Texas 77843

DCEAN DRILLING PROGRAM

Ocean Drilling Program Texas A&M Research Foundation College Station, TX 77843-3469 (409) 845-2673

SUMMARY OF OCEAN DRILLING PROJECT - LEG 100

The scientific party aboard JOIDES RESOLUTION for Leg 100 of the Ocean Drilling Project consisted of:

> Philip Rabinowitz (Texas A&M University) Co-Chief Scientist

Louis Garrison (Texas A&M University) Co-Chief Scientist

William Merrell (Texas A&M University) Co-Chief Scientist

Robert Kidd (Texas A&M University) Co-Chief Scientist

Andy Adamson (Texas A&M University) Christian Auroux (Texas A&M University) Jack Baldauf (Texas A&M University) Brad Clement (Texas A&M University) Russ Merrill (Texas A&M University) Audrey Meyer (Texas A&M University) Amanda Palmer (Texas A&M University) Elliott Taylor (Texas A&M University)

NAME

PHIL RABINOWITZ WILLIAM MERRELL SANDRA TOYE

ARCH MCLERRAN

PAT THOMPSON GLEN FOSS STEVE HOWARD MIKE STORMS BILL ROBINSON ANDY ADAMSON CHRISTIAN AUROUX JACK BALDAUF BRAD CLEMENT ELLIOT TAYLOR MARK WIEDERSPAHN KEN GRIFFITH AUDREY MEYER

AMANDA PALMER RUSS MERRILL

JACK FOSTER

JOHN BECK JOHN EASTLUND DAN BONTEMPO BILL MEYER STEVE ASQUITH BOB HAYMAN TED GUSTAFSON DENNIS GRAHAM BURNEY HAMLIN ROY DAVIS JENNY GLASSER MICHIKO HITCHCOX WENDY AUTIO BRADLEY JULSON GAIL PERETSMAN KATIE SIGLER TAMARA FRANK BILL MILLS DON SIMS JOHN TAUXE LARRY BERNSTEIN MARK DOBDAY HENRIKE GROSCHEL SKIP HUTTON

POSITION ON SHIP

CO-CHIEF SCIENTIST CO-CHIEF SCIENTIST NATIONAL SCIENCE FOUNDATION REPRESENTATIVE MANAGER OF DRILLING OPERATIONS SPECIAL TOOLS ENGINEER OPERATIONS SUPERINTENDENT OPERATIONS. OPERATIONS UNDERWAY GEOPHYSICS STAFF SCIENTIST STAFF SCIENTIST STAFF SCIENTIST STAFF SCIENTIST STAFF SCIENTIST UNDERWAY GEOPHYSICS UNDERWAY GEOPHYSICS ASST. MANAGER OF SCIENCE OPERATIONS STAFF SCIENTIST MANAGER OF SCIENCE SERVICES SUPERVISOR OF COMPUTER SERVICES PHOTOGRAPHER COMPUTER SERVICES COMPUTER SERVICES COMPUTER SERVICES CURATORIAL REPRESENTATIVE CURATORIAL REPRESENTATIVE LABORATORY OFFICER LABORATORY OFFICER LABORATORY OFFICER PHOTOGRAPHER MARINE TECHNICIAN YEOPERSON YEDPERSON CHEMIST CHEMIST CHEMIST CHEMIST MARINE TECHNICIAN MARINE TECHNICIAN MARINE TECHNICIAN MARINE TECHNICIAN MARINE TECHNICIAN MARINE TECHNICIAN PALEOMAGNETICS TECHNICIAN

JESSY JONES JOHN WEISBRUCH RANDY CURRENT DAN LARSON DWIGHT MOSSMAN MIKE REITMEYER MARINE TECHNICIAN STOREKEEPER ELECTRICAL TECHNICIAN ELECTRICAL TECHNICIAN ELECTRICAL TECHNICIAN ELECTRICAL TECHNICIAN

SHAKEDOWN PART B

PHILIP RABINOWITZ LOU GARRISON WILLIAM MERRELL AL SOUTHERLAND

KAREN REIDEL ARCH MCLERRAN

LAMAR HAYES PAT THOMPSON DAVE HUEY STEVE HOWARD CLAUDE MABILE STAN SEROCKI BILL ROBINSON ANDY ADAMSON CHRISTIAN AUROUX JACK BALDAUF BRAD CLEMENT ELLIOT TAYLOR MARK WIEDERSPAHN ROB KIDD

RUSS MERRILL

JACK FOSTER

JOHN BECK JOHN EASTLUND DAN BONTEMPO JERRY BODE DIANA STOCKDALE BOB OLIVAS

TED GUSTAFSON DENNIS GRAHAM BURNEY HAMLIN JENNY GLASSER MICHIKO HITCHCOX BRADLEY JULSON BILL MILLS GAIL PERETSMAN KATIE SIGLER DON SIMS JOHN TAUXE KEVIN DE MAURET BETTIN DOMEYER MATT MEFFERD MARK NESCHLEBA JOE POWERS KEVIN ROGERS CHRISTIAM SEGADE

CO-CHIEF SCIENTIST CO-CHIEF SCIENTIST CO-CHIEF SCIENTIST NATIONAL SCIENCE FOUNDATION REPRESENTATIVE PUBLIC INFORMATION-TAMU MANAGER OF DRILLING OPERATIONS OPERATINS SUPERVISOR SPECIAL TOOLS ENGINEER OPERATIONS OPERATIONS OPERATIONS OPERATIONS UNDERWAY GEOPHYSICS STAFF SCIENTIST STAFF SCIENTIST STAFF SCIENTIST STAFF SCIENTIST STAFF SCIENTIST UNDERWAY GEOPHYSICS MANAGER OF SCIENCE **OPERATIONS** MANAGER OF SCIENCE SERVICES SUPERVISOR OF COMPUTER SERVICES PHOTOGRAPHER COMPUTER SERVICES COMPUTER SERVICES CURATORIAL REPRESENTATIVE CURATORIAL REPRESENTATIVE SUPERVISOR OF LOGISTICAL AND TECHNICAL PERSONNEL LABORATORY OFFICER LABORATORY OFFICER LABORATORY OFFICER MARINE TECHNICIAN YEOPERSON CHEMIST MARINE TECHNICIAN CHEMIST CHEMIST MARINE TECHNICIAN MARINE TECHNICIAN PHOTOGRAPHER MARINE TECHNICIAN MARINE TECHNICIAN MARINE TECHNICIAN MARINE TECHNICIAN MARINE TECHNICIAN MARINE TECHNICIAN

RANDY CURKENT Dan Larson Dwight Mossman Mike Reitmeyer ELECTRICAL TECHNICIAN ELECTRICAL TECHNICIAN ELECTRICAL TECHNICIAN ELECTRICAL TECHNICIAN

CRUISE NARRATIVE

Leg 100 was the shakedown cruise of the JOIDES RESOLUTION (SEDCO/BP 471). As such the primary cruise objectives were to determine the readiness of the ship, the drilling system, and the scientific laboratories. It also gave the crew and technicians an opportunity to train on drilling and scientific equipment.

The JOIDES RESOLUTION departed Pascagoula, Mississippi, at 13:35 CST on January 11, 1985 and immediately proceeded to Site 625. We arrived on site at 0800 January 12, having been delayed because of the decoupling of one of the twelve main engines. The RESOLUTION sailed with eleven engines for the duration of the cruise, yet was still able to make over twelve knots at maximum speed. Sedco conducted thruster tests until 2200 when a beacon was dropped and the ship went to a full dynamic positioning mode. At 0800 on January 15, after positioning tests were completed, Sedco started running drillpipe. At 0250 on January 16, the first core came aboard the JOIDES RESOLUTION. Standard rotary, hydraulic piston, and extended-core-barrel rotary coring procedures were sucessfully implemented. (See Site 625 report following). On the 18th, some Sedco and ODP personnel were changed by helicopter. The RESOLUTION experienced 18 ft seas and winds gusts of more than 40 knots during January 20; and, while the drilling crew was unable to remove drill collars so we could get under way, they were able to continue coring operations. At 2018 on January 21, the RESOLUTION departed Site 625. The

seismic reflection gear was streamed for the first time and a pass was run over the Site 625 beacon. Tests were run at various cruising speeds during the transit to Key West.

At 0915 on 23 January, we halted off Key West to await the helicopter transfer of one of the Co-Chief Scientists of Leg 101. We had decided to conduct cone placement and re-entry tests at one of the Leg 101 sites instead of on the Mississippi fan. While off Key West, a sucessful test of the explosive severing of drillpipe was completed. At 0030 on 24 January, we departed the Key West station taking seismic reflection measurements. Tests were again conducted of the water gun record quality at various cruising speeds and an execellent record was made at 6 knots during the run to the beacon drop at the proposed Leg 101 Site BAH-1A.

We arrived at the Florida Straits Site BAH-1A at 0630. At this site, the ship was near the strongest portion of the Florida Current and experienced currents of over three knots. We aborted drilling at Site A when the drillpipe started strumming and then knocking due to the strong currents. We moved over to Site BAH-1B and had the same experience. At Florida Strait Site BAH-1C, currents were less but we encountered beacon problems.

A decision was made to make the first cone deployment/re-entry test in a region of lower currents so we steamed to an engineering test in the NW Providence Channel, arriving on site at 1530 on January 25. A single mudline core, 6.23 meters of foraminiferal sand, was recovered and the drillstring washed in 100 feet as a pilot hole. The cone was successfully deployed at 1510 on January 27 and fixed in the sea bottom at 2300. We completed tests of the Mesotech and EDO re-entry tools, and departed for Miami at 2040 on January 28.

SITE 625 REPORT

TABLE OF CONTENTS

Α.	SITE SUMMARY	
в.	BACKGROUND AND OBJECTIVES	
c.	OPERATIONS	
D.	LITHOSTRATIGRAPHY	
E.	BIOSTRATIGRAPHY	
F.	PALEOMAGNETICS	
G.	PHYSICAL PROPERTIES	
н.	GEOCHEMISTRY	
I.	SUMMARY AND CONCLUSIONS	
J.	APPENDIX	
	HOLE SUMMARY DIAGRAM	
	BARREL SHEETS	

CORE PHOTOGRAPHS

A. SITE SUMMARY

Site 625

Latitude: 28°49.9'N Longitude: 87°09.6'W Water depth: 889 m corrected

Three holes drilled at Site 625, near De Soto Canyon, west Florida Shelf. Hole 625A penetrated to 234.9 m subbottom taking only four wash cores while testing rotary bit coring. Lower Pliocene nannofossil ooze recovered at T.D. Hole 625B continuously cored Plio-Pleistocene section of nannofossil oozes, calcareous marls and marly nannofossil oozes to T.D. of 235.2 m. Upper 197.1 meters HPC cored (23 cores) and further four XCB cores to T.D. Lower Pliocene nannofossil ooze was recovered at base. Hole 625C was to test overlap of HPC coring. Continuous HPC cores from 5 m to 44.5 m subbottom with good overlap providing almost complete upper Quaternary sequence.

SITE 625

HOLE 625A

Date occupied: 12 January 1985 Date departed: 17 January 1985 Time on hole: 4.3 days Position (latitude; longitude): 28°49.9'N, 87°09.6'W Water depth (sea level; corrected m, echo-sounding): 889 Water depth (rig floor; corrected m, echo-sounding): 889.5 Bottom felt (m, drill pipe): 899.9 Penetration (m): 234.9 Number of cores: 6 Total length of cored section (m): 50.3 Total core recovered (m): 18.9 Core recovery (%): 37.6 Oldest sediment cored: Pliocene Depth sub-bottom (m): 234.9 Nature: Nannofossil ooze Age: Lower Pliocene (NN 13?)

Measured velocity (km/s): 1524

SITE 625

HOLE 625B

Date occupied: 18 January 1985 Date departed: 20 January 1985 Time on hole: 2.3 days Position (latitude; longitude): 28°49.9'N, 87°09.6'W Water depth (sea level; corrected m, echo-sounding): 889 Water depth (rig floor; corrected m, echo-sounding): 899.5 Bottom felt (m, drill pipe): 899.9 Penetration (m): 235.2 Number of cores: 27 Total length of cored section (m): 235.2 Total core recovered (m): 222.9 Core recovery (%): 94.8 Oldest sediment cored: Pliocene Depth sub-bottom (m): 235.2 Nature: Nannofossil ooze

Age: Lower Pliocene (NN14 - NN16)?

Measured velocity (km/s): 1541

SITE 625 HOLE 625C

Date occupied: 21 January 1985 Date departed: 21 January 1985 Time on hole: 19 hrs Position (latitude; longitude): 28°49.9'N, 87°09.6'W Water depth (sea level; corrected m, echo-sounding): 889 Water depth (rig floor; corrected m, echo-sounding): 899.5 Bottom felt (m, drill pipe): 900 Penetration (m): 44.5 Number of cores: 4 Total length of cored section (m): 39.5 Total core recovered (m): 39.5 Core recovery (%): 100 Oldest sediment cored: Pleistocene Depth sub-bottom (m): 44.5 Nature: Marly nannofossil ooze Age: U. Pleistocene (NN 21/20?) Measured velocity (km/s): 1548

B. BACKGROUND AND OBJECTIVES

Site 625 is located south of the axis of De Soto Canyon in the northeastern Gulf of Mexico (Figure B-1). De Soto Canyon separates the predominately terrigenous sediments of the Northern Gulf from the carbonates of the West Florida Slope. Site 625 lies at 920 m water depth within the carbonate province. Two closely related stratigraphic problems were to be addressed at this site: 1) the need for high-quality biostratigraphic reference sections in the Gulf region, and 2) the unresolved relationship between eustatic sea level cycles and the disconformity-bounded depositional sequences identified on regional seismic lines.

Paleontologic and lithologic examinations of industry cores by Lamb and Beard (1972) and Mitchum (1978) (who also presents results from 4,600 km of seismic sparker lines) demonstrates intermittent depositional and erosional events from the lower Cretaceous through Recent in the De Soto Canyon region. The Cenozoic units observed by Lamb and Beard (1972) and Mitchum (1978) in discontinuous cores taken near Site 625 are foraminiferal-nannofossil oozes, with siliceous microfossils and volcanic ash present in older units (Eocene through Oligocene-lower Miocene). Units of middle Miocene through Pleistocene are marked by increasingly abundant clays and transported shallow water fossils. The discontinuous cores taken by industry and the several DSDP Legs in the Gulf has produced an incomplete biostratigraphic reference section for the region. The section recovered at Site 625 might provide a continuous seismic record of lower Miocene through Pleistocene material, and an opportunity to document the occurrence of several unconformities that may be expressed as biostratigraphic gaps.

Some biostratigraphic gaps in the West Florida Slope sections appear as boundaries to groups of reflecting horizons on regional seismic profiles. A particularly striking example is noted by Mitchum (1978) between flat-lying, continuous Oligocene-lower Miocene and older sediments, and the strongly downlapping middle Miocene and younger progradational units (Figure B-2). A relationship between the unconformity-bounded depositional sequences of the West Florida Slope and the Vail model of eustatic sea level change (Vail, et al., 1977) is suggested (Mitchum, 1978), although more stratigraphic control is needed to support this interpretation. Several recent DSDP Legs, including the Goban Spur (Leg 80) and New Jersey (Leg 95) transects, have investigated the record of disconformities in passive margin sequences with regard to cyclic sea level fluctuations. Preliminary results from these legs indicate a correlation of regional unconformities with eustatic cycles, and any additional data from Site 625 might further substantiate the Vail model.

The scientific objectives of drilling at Site 625 were:

 To document sedimentologic, paleontologic, geochemical, geotechnical and geomagnetic characteristics of the depositional sequences, 2. To date and define unconformities in the section and determine their relationships to seismic boundaries,

3. To correlate biostratigraphic and magnetostratigraphic results with global geochronology and the Vail model of eustatic sea level change,

As this was the first site drilled during the shakedown cruise of the <u>JOIDES Resolution</u>, the major objectives here were necessarily to test rotary, APC and XCB drilling and coring systems, and to familiarize scientists and marine technicians with shipboard lab equipment, core handling, and sampling procedures.

- Figure B-1. Bathymetric map of the northeastern Gulf of Mexico showing location of Site 625 and seismic profile line 126 (shown in Figure B-2), after Mitchum (1978).
- Figure B-2. Seismic profile line 126 (see Figure B-1 for location) from Mitchum (1978); major change in sedimentary regime occurs between the Oligocene-lower Miocene unit and younger beds (horizon F of Mitchum, 1978).

FIG. 1-Bathymetric map. northeastern Gulf of Mexico, showing location of seven core holes and seismic profile lines on West Florida Slope.

FIGURE 2

FIG. 3-Seismic profile line 126, reflection time section (see Fig. 1 for location). Marked change in sedimentary regime occurs at horizon F, with strong downlap of younget beds. Channel on right of core hole 29-42 is part of ancestral DeSoto Canyon system (see Fig. 17, 18)

FIG. 8-Seismic profile line 138, reflection dime section (see Fig. 1 for location).

from Mitchum (1978)

REFERENCES

- Lamb, J.L., and Beard, J.H., 1972. Late Neogene planktonic foraminifers in the Caribbean, Gulf of Mexico, and Italian stratotypes. University of Kansas Paleontological Contributions: Article 57 (Protozoa 8).
- Mitchum, R.M., Jr., 1978. Seismic stratigraphic investigation of the West Florida Slope, Gulf of Mexico. <u>In</u> Bouma, A.H., Moore, G.T., and Coleman, J.M. (Eds.), Framework, Facies, and Oil-Trapping Potential of the Upper Continental Margin: AAPG Studies in Geology 7, pp. 193-223.
- Vail, P.R., Mitchum, R.M., Jr., and Thompson, S. III, 1977. Seismic stratigraphy and global changes of sea level, <u>In</u> Seismic stratigraphy - applications to hydrocarbon exploration: AAPG Memoir 26, p. 49-212.

C. OPERATIONS

C. OPERATIONS

<u>JOIDES</u> <u>Resolution</u> arrived at Site 625 near De Soto Canyon streaming no seismic gear. In addition, the bathymetric profiling equipment [PDR] was working only intermittently and no unequivocal water depth could be given. Site location at around 0800 hrs on 11th January, 1985 was made from previously determined coordinates ELat.28°49.9 N; Long.87°09.6W] using LORAN-C and satellite navigation.

The beacon was not dropped on arrival at the site since SEDCO first undertook a 31 hour dynamic positioning test. An acoustic beacon was dropped at 2210 hrs on 12 January while seas were increasing to 6 feet and winds gusting 30 knots. A water depth on site was determined at 889 meters [corrected] from the bridge echo-sounder system.

HOLE 625A

We began tripping pipe at 0815 hrs on 15 January and a mudline core was taken on spud-in at 0015hrs with 899.9 meters of drillpipe below the rig floor.

The first core of the Ocean Drilling Program came on deck at 0250 hrs on 16 January, 1985. This was effectively a punch-core with a recovery of the mud-line and 2.8 meters of sediment. A 40.2 meter interval was washed ahead and Core 2 was brought on board at 0703 hrs. This recovered only the core catcher. We followed this with a series of further wash cores at 48 meter intervals in the hole. Core 3 recovered 8 meters of wash core, Core 4 was empty, including its core catcher, and Core 5 held 8.6 meters of wash core to 187.2 meters subbottom. The final washed interval took penetration to 234.9 meters subbottom, the terminal depth for Hole 625A. The lowermost core 6 recovered 4.1 meters of wash core (Table C-1).

At this stage we had decided to begin hydraulic piston coring and it was felt our scientific objectives would be best served by a second hole to continuously core the Plio-Pliestocene section. We began retrieving pipe at 0730 hrs and cleared the mudline at 0000.

HOLE 625B

A mudline hydraulic piston-core began hole B with no offset. Core 1H was brought on deck at 0615 hrs on 18 January. Its core liner was fractured and split but 7.9 meters of sediment were recovered. This recovery was taken as the amount by which the drill-bit should be advanced before the next HPC core would be shot. Core 2H was on deck at 0915 hrs. It was measured at 9.5 meters and the bit again advanced by this amount. We continued with this method of HPC coring to a depth of 197.1 meters in this hole; unfortunately inaccuracies in measurment of core recovery on the catwalk, such as not including the core catcher, and their correction some time later in the core laboratory meant that percentage core recoveries are frequently in excess of 100 over this section (see Table C-2).

Core 3H was recovered at 1035 hrs with no liner in the barrel. The core was manually extruded into 8 separate short pieces of liner resulting in a moderately disturbed 7.2 meters of Core recovery continued with this method of HPC sediment. operation through Core 19H at 162.1 meters subbottom obtaining variable lengths of sediment, ranging between 4.7 and 9.9 meters, in generally undisturbed condition. Core 20H had two upper sections in soupy condition and Core 21H came on deck at 1700 hrs 19 Jananuary with its liner damaged. Core 22H was even more severely restricted at its lower end, these effects presumably caused by lack of pressure sealing in the core barrel. A rubber seal was found displaced inside the liner of a number of the lower HPC cores including Core 23H, the last HPC core in this which was on deck at 2015 hrs, 19 January. We began hole extended core barrel operations at 0030 hrs on 20 January. Each XCB core would advance downhole a complete barrel length [see Table 1].Core 24X was on deck at 0230 hrs containing 6.4 meters of sediment. A further three XCB cores were recovered in Hole 625B to a terminal depth of 235.2 meters subbottom.

At 1200 hrs we began to pull pipe with the intention of leaving the site and cleared the mudline at 0100 hrs. Most of our operations in Hole 625B had been conducted in gale force sea conditions with waves up to 18 feet and wind speeds up to 50 knots. On retrieving most of the pipe we found at 1515 hrs that sea conditions were such that we were unable to bring the drill collars on board. A period of 5-1/4 hours elapsed before we decided that no abatement in sea state was likely for some time. We began to trip pipe again at 2050 hrs to begin an overlapping HPC Hole, 625C.

HOLE 625C

The first core in hole 625C was aimed at overlap with cores 1 and 2 of the previous hole and so the drillstring was lowered to 905 meters below sea level datum, assuming a water depth of 900 meters (Table C-3).

Core 1H was retrieved at 0415 hrs, 21 January with a recovery of 10 meters. Three further HPC cores were taken continuously to a terminal depth of 44.5 meters subbottom. Core recovery was good in these four cores despite 14 foot waves during operations. When split they showed excellent correlation with colour banding in cores from the previous hole. Core 3H was more disturbed than the others and contained a displaced 0-ring.

With the prospect of better sea conditions that would allow us to retrieve the drill collars, we began to pull pipe in this hole at 1030 hrs and cleared the mudline at 1130 hrs on 21 January.

All drilling operations were complete at Site 625 by 2018 hrs on 21 January. We got underway at about 2300 hrs and began streaming the seismic gear, employing an 80 cu. in. water gun, in a northward direction away from the site. After some initial delays because of inexperience with deployment of new equipment, we were able to turn and run southeast towards the site. The ship passed within 0.5 km of the beacon position at 0507, 22 January and we obtained a reasonable reference seismic record of the site (Figure C-1) which showed evidence of a slump unit at depth in the section. We departed the area of Site 625 around 0600 hrs in the direction of Key West.

TABLE C-1

CORES	DEPI TOP(m)	CH BOTTOM (m)	TOTAL RECOVERY (m)	PERCENT RECOVERED
lR	0.0	2.8	2.8	100
2W*	33.5	43.0*	0.0	0
3	81.5	91.0	3.8	8
4	129.7	139.2	0.0	0
5	177.7	187.2	8.2	86
6	225.4	234.9	4.1	8

HOLE 625A

Penetration: 234.9 m Number of cores: 6 Total length of cored section: 50.3 m Total core recovered: 18.9 m Core Recovery: 37.6%

*NB Wash cores are by convention placed at the bottom of the interval washed, though we recognize that they could come from any part of that interval.

TABLE C-2

HOLE 625B

	DEPTH		TOTAL	PERCENT
CORES	TOP (m)	BOTTOM (m)	RECOVERY (m)	RECOVERED
1H*	0.0	7.9	7.9	100
2H	7.9	17.4	9.9	100
ЗH	17.4	26.9	7.2	57
4H	26.9	36.4	9.9	100
5H	36.4	40.9	4.7	103
6H	40.9	50.4	9.9	103
7H	50.4	58.5	8.8	108
8H	58.5	67.5	9.5	105
9H	67.5	75.4	8.3	109
10H	75.4	83.6	8.2	100
11H	83.6	92.2	8.5	98
12H	92.2	100.8	8.5	98
13H	100.8	109.5	8.1	92
14H	109.5	118.5	8.9	99
15H	118.5	127.3	8.6	98
16H	127.3	136.6	9.1	98
17H	136.6	145.8	9.2	99
18H	145.8	153.6	7.9	102
19H	153.6	162.1	8.1	95
20H	162.1	170.6	8.5	101
21H	170.6	179.3	8.6	97
22H	179.3	188.0	8.7	100
23H	188.0	197.1	8.9	99
24X	197.1	206.7	6.4	96
25X	206.7	216.3	9.6	100
26X	216.3	225.8	5.3	98
27X	225.8	235.2	5.7	91

Penetration: 235.2 m Number of cores: 27 Total length of cored section: 235.2 m Total core recovered: 222.9 m Core recovery: 94.8%

*NB By this method of hydraulic piston-coring core recovery measured on deck is given to the driller as the amount to move the bit down before shooting the next core. Inaccuracy in measurement of core at this stage and failure to include core catcher recovery result in later lab measurements being greater.

TABLE C-3

HOLE 625C

CORES	DEF TOP (m)	TH BOTTOM (m)	TOTAL RECOVERY (m)	PERCENT RECOVERED
1H	5.0	15.0	10.0	99
2H	15.0 .	24.8	9.8	98
зн	24.8	34.7	9.9	98
4H	34.7	44.5	9.8	100

Penetration: 44.5 m Number of cores: 4 Total length of cored section: 39.49 Total core recovered: 39.5 m Core recovery: 100%

D. LITHOSTRATIGRAPHY

D. LITHOSTRATIGRAPHY

Introduction

Three holes were drilled at Site 625. Hole A penetrated 234.9 meters into sediments with 18.9 meters recovery; Hole B penetrated 235.2 meters with 232.9 meters recovery; and Hole C penetrated 44.5 meters with 39.5 meters recovery. The sediments vary within hole from marly nannofossil oozes to calcareous hemipelagic muds.

Hole A

This hole was the first to be drilled by the Ocean Drilling Program, and starts with 20 cm of a dark grayish brown marly nannofossil ooze followed by 270 cm of gray marly calcareous oozes followed by a horizon, several centimeters thick, of olive gray calcareous silty muds. Large sections of the lithology were missed due to washing, but sediments at 177.7 meters to 187.2 meters BSF, consist entirely of gray to light gray marly nannofossil oozes. The last core (Core 6W) recovered in this hole at 225.4 meters to 234.9 meters BSF, consists of alternating olive gray and gray marly nannofossil oozes.

The three cores with recovery described from this hole were strongly disturbed by rotary drilling and washing. Pyrite occurs as specks, blebs and nodules. Carbonate bomb data show a gradual increase in the calcareous components with depth increasing from 20% CaCo₃ at the top to 70% at the bottom of the hole.

Hole B

This is the deepest and most continuous of the holes at Site 625, with a total of 232.9 meters of sediments recovered. The entire lithologic column contains pyrite specks and blebs. At several horizons, pyrite nodules were found. The sediments vary in color through various shades of gray reflecting changes in carbonate content. The HPC coring provided generally undisturbed cores and sedimentary structures could be clearly seen. These structures, most often, result from bioturbation (usually <u>Zoophycos</u> and <u>Chondrites</u>). Several vertical burrows were described. Also many shell fragments (between 0.5 mm and 2-3 mm) occur in the column.

Two variations in overall lithology were noted in the hole.

- changes in the nature of the calcareous component of the sediment from top to bottom:
 - nannofossil oozes (0 to 51 meters BSF)
 - calcareous oozes (51 to 90 meters BSF)
 - nanno-foram oozes (90 to 101 meters BSF)
 - nannofossil oozes (10 to 109 meters BSF)
 - nanno-foram oozes (109 to 136 meters BSF)
 - nannofossil oozes (136 to 235 meters BSF)
- changes in the percentage of of detrital clay varying from 20% to 80%.

A first sight, there, appears to be only a gradual decrease in the mud content with depth, from 70% at the top of the hole to 20% at the bottom, but more detailed analysis allows the column to be divided into two litholigic units (see Appendix A-2):

- an upper Lithologic Unit I from 0 to 75 meters BSF which shows unsystematic variation in the mud percentage;
- a lower Lithologic Unit II from 75 to 235 meters BSF where several sedimentary cycles can be interpreted. Two of these are particularly clear; from 75 to 103 meters BSF and between 103 and 146 meters BSF. Two other cycles are tentatively identified, one between 156 and 170 meters BSF and another from 170 to 194 meters BSF.

These cycles probably reflect changing environmental conditions and it is important to conduct shorebased studies, including X-ray diffraction and isotope $({}^{18}0/{}^{16}0)$ studies, to determine whether they may be climatic and/or eustatic in origin or whether they may be due to regional tectonic or sedimentological causes.

Hole C

This hole is the shallowest drilled at Site 625 penetrating only 44.5 meters with a total recovery of 39.5 meters. The sedimentary column consists of calcareous hemipelagic muds and marly nannofossil oozes of Pleistocene age. The four cores recovered from this hole were slightly disturbed by HPC drilling, although structures were still clearly observable. These structures generally result from bioturbation (<u>Chondrites</u> and other burrows). Pyrite streaks and spots and shell fragments (0.5 to 3mm) appear throughout the column. The sediments are several shades of gray.

The sedimentary column comprises the following:

- calcareous hemipelagic muds (5 to 15 meters BSF)

- marly calcareous oozes (15 to 31 meters BSF)

- calcareous hemipelagic muds (31 to 44.5 meters BSF).

General

The following comparisons can be made between the three hole at Site 625:

- hole A and hole B show the same general increase in carbonate content with depth.
- hole B and hole C have the same abrupt increase in calcareous content at around 75 meters BSF.

The Hole Summary diagrams in Appendix A reflect the Lithologic Units defined above.
E. BIOSTRATIGRAPHY

E. BIOSTRATIGRAPHIC SUMMARY

Introduction

Α total of 37 cores, or 281.3 meters of Pliocene to Pleistocene sediments were recovered in three holes at Site 625 (Figure E-1). The predominent lithologies in these holes were marly nannofossil oozes and calcareous hemipelagic muds. These deposits contained variable amounts of planktonic and benthic foraminifers and calcareous shells and skeletal material, including ostracodes, pteropods, sponge spicules, bryozoans, tintinnids, algal cysts and small gastropods. The frequent occurrence of many shallow-water taxa indicates downslope transport of material to Site 625 throughout the Plio-Pleistocene.

As no calcareous microfossil specialists were present among the shipboard party and time for paleontologic studies was limited, the age determinations presented here are subject to significant revision based on further study of Leg 100 materials.

Calcareous nannofossil determinations were based on Martini (1971), Gartner (1977) and Haq (1979). Foraminiferal dates were obtained using Lamb and Beard (1972) and Stainforth, et al. (1975).

Hole 625A

One rotary core (625A-1R) and five wash cores (625A-2 through 6) were recovered at Site 625. The presence of <u>Emiliania</u> <u>huxleyi</u> in the nannofossil assemblage of Core 625A-1R,CC (2.8 mBSF) indicates an uppermost Pleistocene date (NN 21), suggesting that the mudline was successfully recovered. Core 625-2W,CC (43.0 mBSF) contains an upper Pleistocene nannofossil assemblage including <u>Helicopontosphaera</u> <u>kamptneri</u>, <u>Gephyrocapsa</u> <u>caribbeanica</u>, <u>Gephyrocapsa</u> <u>oceanica</u>, small <u>Gephyrocapsa</u> and <u>Ceratolithus</u> c.f. <u>telesmus-cristatus</u>. The foraminifers in the first two cores include pink <u>Globigerinoides</u> <u>ruber</u>, <u>Globorotalia</u> <u>truncatulinoides</u>, <u>Orbulina</u> <u>universa</u>, <u>Globorotalia</u> <u>crassoformis</u>, and <u>Globorotalia</u> <u>menardii</u>, all indicating an upper Pleistocene date.

The nannofossil <u>Pseudoemillania</u> <u>lacunosa</u> appeared in Core 625A-3W,CC (91.0 mBSF), suggesting a middle Pleistocene (NN 19) age. Core 625A-4W (129.7 - 139.2 m BSF) was a water core, and Core 625A-5W,CC (187.2 m BSF) contained the first discoasters observed in this hole indicating that the Pliocene-Pleistocene boundary lies between 91.0 and 177.7 m BSF in Hole 625A. Cores 625A-5W,CC (187.2 m BSF) and 625A-6W,CC (234.9 m BSF) contain the nannofossils <u>Discoaster</u> <u>brouweri</u> and <u>D</u>. c.f. <u>asymmetricus</u> suggesting an upper Pliocene date (NN 18).

Reworked older Pliocene and Miocene nannofossils provide evidence of erosion and redeposition of sediments.

Hole 625B

Twenty-seven cores were recovered at Hole 625B, the first twenty-three taken with the hydraulic piston corer (HPC) and the last four with the extended core barrel (XCB), for a total penetration of 235.2 m.

Core 625B-1H,CC (7.9 mBSF) was barren of nannofossils, but Cores 625B-2H (17.4 mBSF) and 625B-3H,CC (26.9 mBSF) contained <u>E</u>. <u>huxlyei</u> suggesting an uppermost Pleistocene date (NN 21). The foraminiferal assemblage, including pink <u>G</u>. <u>ruber</u> and <u>G</u>. <u>truncatulinoides</u> supports this assignment.

Pleistocene material occurs down through Core 625B-11,CC (92.2 m BSF), where lower Pliocene nannofossils such as <u>Cyclococcolithinia macintyrei</u> and foraminifers such as <u>Globorotalia tosaensis</u> are found. In Core 625B-12,CC (100.8 m BSF) the first abundant <u>D</u>. <u>brouweri</u> are noted, indicating a Pliocene date (NN 18). The rest of the section in Hole 625B, cores 625B-13,CC (109.5 m BSF) through 625B-27X,CC (235.2 m BSF), contains an apparently complete Pliocene sequence (to NN 13?). No significant biostratigraphic gaps were detected on the basis of cursory shipboard nannofossil scans.

Hole 625C

Four HPC cores were recovered from Hole 625C for a total penetration of 44.5 mBSF. These all contained Pleistocene nannofossils.

REFERENCES

- Gartner, S., 1977. Calcareous nannofossil biostratigraphy and revised zonation of the Pleistocene. <u>Marine</u> <u>Micropaleontology</u>, 2: 1-26.
- Haq, B.U., 1979. Calcareous nannoplankton. In, Haq, B.U. and Boersma, A. (Eds.), <u>Introduction</u> to <u>Marine</u> <u>Micropaleontology</u>: New York (Elsevier), pp. 79-107.
- Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation, <u>Proc. II Planktonic Conference Rome</u>, pp. 739-785.
- Lamb, J.L., and Beard, J.H., 1972. Late Neogene planktonic foraminifers in the Caribbean, Gulf of Mexico, and Italian stratotypes. <u>The University of Kansas Paleontological</u> <u>Contributions</u>, Article 57 (Protozoa 8).
- Stainforth, R.M., Lamb, J.L., Luterbacher, H., Beard, J.H., and Jeffords, R.M., 1975. Cenozoic planktonic foraminiferal zonation and characteristics of index forms. <u>The University</u> <u>of Kansas Paleontological Contributions</u>, Article 62.

10 X 10 TO THE CENTIMETER 18 X 25 CM KEUFFEL & ESSER CO. MADE IN USA.

F. BIOSTRATIGRAPHY

F. PALEOMAGNETICS

The Hydraulic piston corer (HPC) and extended core barrel (XCB) corer recovered over 235 meters of relatively undisturbed Quaternary to Pliocene sediment at Hole 625B. The HPC was also used to recover over 34 meters of Quaternary to Pleistocene sediment at Hole 625C. Both of these holes were sampled for paleomagnetic study. The rotary and wash cores obtained at Hole 625A were not sampled because of the discontinuous nature of the cored section.

Whole core magnetic susceptibility measurements were made on each core section before the cores were split. The core sections were passed through a 400mm sensing loop which is part of the shipboard Bartington Susceptibility Meter system. The meter is interfaced to the Epson computer to allow for rapid measurements. Each core section was passed through the loop, with measurements made every locm. The observed variations in magnetic susceptibility downcore (Figure F-1) appear to be related to lithologic variations and provide a useful tool for correlating between holes at a given site (see FIGURE I=1, this vol.).

Discrete paleomagnetic samples were taken by pressing 7cc plastic cubes into the split face of the core. The samples were oriented with respect to the vertical by aligning an arrow marked on the box parallel to the edge of the core liner and pointing up core. Relative horizontal orientation within each core was maintained by splitting each core so that the double black line marked on the core liner was in the center of the working half.

Samples were taken at nominally 1.5 meter intervals (one per core section). The direction and magnitude of the natural remanent magnetization (NRM) of each sample were measured using a Molspin spinner magnetometer. Five pilot samples were subjected to progressive alternating field (A.F.) demagnetization studies at 50 to 100 0e increments. The results of these studies indicate that the magnetizations are univectorial and that A.F. treatment at 50 0e is adequate to isolate the characteristic remanent magnetizations. On the basis of these studies the remaining samples which exhibited magnetizations well above the instrumental noise level were demagnetized using a peak A.F. of 50 0e.

The results after A.F. treatment at 50 0e are presented in Figure F-2 as inclination and intensity plotted with subbottom depth. The declinations are not shown because of the lack of orientation between cores. A dramatic drop in intensity is observed at 64 meters. Below this depth the magnetizations are below the noise level of the magnetometer, and the results are not plotted.

The inclinations observed above 58m group about the axial dipole field value of 47.8° for the site latitude (28.9°N) but exhibit a significant variation (of up to 20°) about this value. Reversed polarity directions are observed between 58m and 63m. Interpreting the normal polarity zone observed from 0 to 58

m as the Brunhes Chronozone is consistent with the placement of the Pleistocene/Pliocene boundary between cores 12H and 13H by shipboard paleontologists. The reversal at 63 m may be correlated with the upper Jaramillo reversal although this correlation is not well supported because of the incomplete record downcore.

The inclination and intensity records obtained at Hole 625C are plotted in Figure F-2b. The positive inclination values are consistent with the results observed in Hole 625B and are interpreted as being correlative with the Brunhes Chron based on the biostratigraphic results.

ORIENTATION TESTS

Two oriented cores were taken from 625B and 625C. The Eastman-Whipstock multishot downhole tool was deployed twice at each hole. The results indicate the the tool worked successfully all four times, and the tool is capable of providing the azimuth of the fiducial line marked on the core liner with respect to magnetic north.

The general agreement of the observed inclinations with the predicted axial dipole field support the interpretation that these sediments are reliable recorders of the earth's magnetic field. Therefore the normal polarity declinations should point towards magnetic north. This allows a test of the accuracy of the downhole orientation tool: the normal polarity declinations should agree with the azimuth obtained from the multishot system.

Unfortunately in the two cores oriented at 625B (22H and 23H) the remanent magnetizations were so weak that it was not

possible to make reliable measurements on all but the uppermost sample from core 22H. This measurement agreed well with the multishot results after a 180° orientation error was discovered in the multishot assembly.

The tool was tested again at Hole 625C (cores 3H and 4H were oriented). In this case the quality of the paleomagnetic data is good but the observed declinations in cores 3H and 4H do not agree with the multishot readings. Severe coring disturbance, including 5 meters of flow-in in the top of core 3H, however, makes it difficult to relate the paleomagnetic data to the multishot readings since the position of the undisturbed sediment within the cored interval is not known.

Further examination of the declination records obtained at 625B and 625C using the Advanced Piston Corer reveals that a number of cores exhibit a rotation downcore. Detailed declination records from 625B and 625C are plotted in Figure F-3 and F-4 respectively. With the exception of 625C, 4H, each of these cores show a counterclockwise rotation of the declinations when viewed downcore. The magnitude of this rotation varies from 142° in 625B, core 2H to 22° in 625C core 1H. The magnitude of the rotation does not appear to be directly related to the nature or amount of disturbance observed in the tops of the cores. Unfortunately, the limited number of cores suitable for paleomagnetic study obtained at this site make it difficult to examine possible relationships between the nature, magnitude and sense of rotation with lithologic characteristics such as shear strength or water content.

In each case the rotations are counterclockwise looking downcore. The Advanced Piston Corer was designed to prevent spiraling of the core barrel as it enters the sediment by using a key-in-groove which couples the scoping portion of the core barrel to the piston rod. Examination of the core liners failed to reveal evidence that the orientation pin had sheared, and therefore it appears that the liners did not rotate during the coring process. The declination records therefore suggest that a decoupling occurs between the sediment and the core liner, and that the sediment twists as it enters the liner. Further documentation of this behavior in different sediment types is needed to clearly define the parameters controling the twisting and allow a solution to this problem to be developed.

Figure Captions

Figure F-1 Whole core magnetic susceptibility plotted with subbottom depth.

Figure F-2 Inclination and intensity records obtained at 625B (a) and 625C (b) plotted verswlus subbottom depth.

Figure F-3 Details of declination records obtained from individual cores taken at Site 625B.

Figure F-4 Details of declination records obtained from individual cores taken at Site 625C.

6750 5 908 4 300 200 Evample Fig 1 (will plut on appropriate reale at. C.S.) 6 00 200 900 . 625C N -100 Ś 200 -Figure F-1 6250 6 ξ

Ko∑ In X 10 THE CENTIMETER IN X 25 CM KEUFFEL & ESSER CO. WANT W 12.4.

Ko E to X to THE CENTIMETER IN X 25 CM KEUFFEL & ESSER CO. WARTWINK

K TO TO THE CENTIMETER IS X 35 CM KEUFFEL & ESSER CO. MADE NU 5.X.

G. PHYSICAL PROPERTIES

G. PHYSICAL PROPERTIES

Introduction

Cores retrieved at Site 625 were processed through a systematic series of analyses in the physical properties laboratory. The different analyses included a density scan using the GRAPE on all whole round sections excluding core catcher samples. All cores were allowed to reach thermal equilibrium, for at least four hours, at which time measurements of thermal conductivity were made utilizing the von Herzen probe technique.

Core sections were sampled immediately after splitting in order to avoid any changes resulting from dessication. The analyses performed with sub-samples of the split section were, in order of execution, vane shear strength, compressional wave velocity and index properties. All tests were performed where minimal sampling disturbance was found. The vane shear test was done adjacent to the location of the sub-sample for compressional wave velocity and index properties. These physical properties tests were performed following standard routines described by Boyce(1976,1977). Index properties were measured using a compensated balance technique and a pycnometer for volumetric determinations. Helium was used as the purging gas.

All index properties (bulk density, water content, porosity, void ratio, and grain density) are corrected for an interstitial water salinity of 35 $^{\circ}/_{\circ\circ}$. Carbonate bomb analyses are carried out using the dry residue of the sub-samples (see Section H).

Results

Three holes were drilled at ODP Site 625. Hole 625A was primarily a wash hole and 625C only advanced four cores. Therefore, the physical properties of this site are treated as one hole having a total sub-bottom penetration of 232 meters. The recovered sediments consist of hemipelagic calcareous muds, marly calcareous oozes, and nannofossil oozes. The age of recovered sediments ranges from Pleistocene into Pliocene.

Index properties from this site show/strongest gradient in the uppermost 60 meters (Figures G-1 and G-2). In this interval bulk densities increase from surficial lows of 1.52 g/cm^3 to approximately 1.65 g/cm^3 . Similarly, water contents (expressed relative to the weight of dry solids) decrease from 94% at 1.25 meters sub-bottom to an average of 65% at 60 meters. Porosity follows suit dropping from 80% to 65% over the same interval.

Below 60 meters the gradient of index properties decreases dramatically. With the exception of a few outliers, bulk densities change only 0.15 g/cm^3 over almost 200 meters of sediment cover. Other index properties such as water content and porosity behave similarly. Undrained shear strength, as measured by the miniature vane, is plotted in Figure G-3 as a function of depth. Strengths show a slow increase with depth to approximately 80 meters sub-bottom. In this upper interval strengths range from 3.5 to 38 kPa. Shear strengths here also have less scatter than the underlying sedimentary section. Below 80 meters sub-bottom, the sediment shear strength both increases abruptly and exhibits much greater variability. This may be a combined result of sediment lithologic changes and artifacts resulting from drilling. The depth interval between 150-170 meters sub-bottom bear the highest strengths measured, reaching values in excess of 110 kPa.

Compressional wave velocity analyses were performed using the Hamilton frame device. All measurements discussed were done perpendicular to the bedding plane. Compressional wave velocities ranged from a low of 1470 m/sec to a high of 1670 m/sec (Figure G-4). In general, the downhole trend follows that of index properties with most changes occurring in the upper 60 meters, and becoming relatively constant thereafter. Velocities at the base of the hole are between 1540-1630 m/sec.

Thermal conductivities were measures generally every third core section. A unit supplied by Dr. R. Von Herzen provided the link between a Pro 350 and up to five probes. All tests were done inserting the probes through a small hole in the liner. Thus, measurements were performed parallel to bedding. Figure G-5 shows the distribution of thermal conductiviies. These range from near mudline lows of 2.05×10^{-3} cal/cm.sec.deg to 2.91×10^{-3} cal/cm.sec.deg at 218 meters. A rapid increase in conductivity takes place in the upper 30 meters. Between 30-60 meters sub-bottom values fluctuate around 2.5×10^{-3} cal/sec.cm.deg. A noticeable increase in thermal conductivity occurs at the 70 meter level which may be correlated with the change in carbonate contents and lithology (see Sections L and H).

Discussion

The downhole distribution of physical properties appears to be mainly a function of burial, although the undrained shear strength does reflect the lithologic boundary at 80 meters sub-bottom. This lithologic break is mostly an increase in the percentage of calcium carbonate and, although slight, it appears to affect both shear strength and magnetic susceptibility (see Section F). However, a plot of shear strength against calcium carbonate content (Figure G-6a) illustrates the lack of a coherent relationship between this component and strength. Similarly, compressional wave velocity does not appear to be dependent on carbonate content (Figure G-6b).

Burial is primary agent in the early diagenetic history of a deposit. Typical terrigenous and calcareous sediments show a strong gradient in the uppermost section (0-20 meters) and more gradual gradients with depth. Bryant et al (1981) described typical porosity profiles for sediments with various amounts of carbonate. The reported porosity shifts that they discussed for sediments with carbonate contents between 20-50% and grain size of 60-80% clay size is 65 to 50% over the uppermost 90 meters. Results from Site 625 follow similar gradients although the actual values of porosity are somewhat higher.

Another aspect of burial and its effect on changing physical properties is the effective overburden stress applied by the weight of the sediment pile. Skempton (1970) described a relationship between undrained shear strength and effective overburden stress for normally consolidated marine clays. This relationship, expressed as a ratio of strength to stress, ranges from 0.2 to 0.7. Figure G-7 is a plot of the measured undrained shear strength of sediments from Site 625 against the effective overburden stress. The range defined by Skempton is also shown. It is clear that sediments at Site 625 fall below the range defined suggesting they are underconsolidated. This, however, has been observed to commonly occur in calcareous sediments (Geotechnical Consortium, 1984). Comparison of the shear strength-depth profile for Site 625 falls between those shown by Bryant et al (1981) defined for calcareous oozes and hemi-pelagic terrigenous clays. The actual state of consolidation will be addressed by later shorebased consolidation tests.

GRAPE analyses yielded several interesting pieces of information. First, a number of pyrite nodules were located within the calcareous sediments after the GRAPE scan exhibited abrupt peaks of bulk density, commonly reaching values between $2.3-2.5 \text{ g/cm}^3$. Secondly, the GRAPE scan record was used to cross correlate Holes 625B and 625C. Tentative correlations are drawn in Figure I-2 in the Site Summary and Conclusions. Shifts in the bulk density trends at 625B-2-1(90cm), 625B-2-2(100cm), 625B-2-3(50) correlate within 10 cm. with related shifts and values at Hole 625C at 1-3(90cm), 1-4(100cm), and 1-5(55cm) respectively.

Core distrubance was visibly apparent in several cores where flow-in or distorted bedding could be documented. Analysis of water contents and porosities of sediments at this site reveal an added disturbance, namely compaction. A decrease of both water content and porosity within a given core is systematically repeated downhole. This is noticeable regardless of the care taken to avoid disturbance and Section 1 of any core. Similar effects of HPC performance were discussed by Walton et al (1983).

References

- Boyce, R.E., 1976, Definitions and laboratory techniques of compressional sound velocity parameters and wet-water content, wet-bulk density, and porosity parameters by gravimetric and gamma-ray attenuation techniques, In Schlager,S.O., Jackson,E.D. et al, Init. Repts. DSDP,33: Washington (U.S. Govt. Printing Office),931-935.
- Boyce, R.E., 1977, Deep Sea Drilling Project procedures for shear strength measurement of clayey sediment using a modified Wykeham Farrance laboratory vane apparatus. In Barker, P.F., Daziel, I.W.D. et al, Init. Repts.DSDP, 36:

Washington (U.S.Govt. Printing Office),1059-1072.

- Bryant, W.R., R.H. Bennett and C.E. Katherman, 1981, Shear strength, consolidation, porosity and permeability of oceanic sediments. In Emiliani, C. The Sea V.7, J. Wiley & Sons, New York, 1555-1616.
- Geotechnical Consortium, 1984, Geotechnical properties of sediments from Walvis Ridge, Deep Sea Drilling Project, Leg 75, Hole 532A. In Hay,W.W., Sibuet,J.-C. et al, Init. Repts.DSDP, 75: Washington (U.S. Govt. Printing Office),1109-1127.
- Skempton, A.W., 1970, The consolidation of clays by gravitational compaction, J. Geol. Soc. London, v.125, 373-411.
- Walton, W.H., D.A. Sangrey, and S.A. Miller, 1983, Geotechnical engineering characterization of hydraulically piston-cored deep ocean sediments. In Barker, D.A., Carlson, R.L., Johnson, D.A. et al, Init. Repts. DSDP, 72: Washington (U.S. Govt. Printing Office), 537-549.

figure G-1

46 1512

Ko∑ 10 × 10 TO THE CENTIMETER 18 × 25 CM. KEUFFEL & ESSER CO WARENUSA.

Figure 63

Ko∑ 10 X 10 THE CENTIMETER 18 X 25 CM. KEUFFEL & ESSER CO. MADE IN USA .

250

46 1512

K⁴∑ 10 X 10 TO THE CENTIMETER 18 X 25 CM. KEUFFEL & ESSER CO. MADLIN USA.

Figure 62

K TO X 10 TO THE CENTIMETER 18 X 25 CM keuffel & esser co. Marin 14 K. 25 CM

Calle (% Total Bry Weight)

Mo∑ 10 X 10 TO THE CENTIMETER 18 × 25 CM

1.7

Figure Gle

46 1512

K T 10 X 10 THE CENTIMETER 18 X 25 CM KEUFFEL & ESSER CO WADTIN 19 X 1.

K4 To X 10 TO THE CENTIMETER 18 X 25 CM KEUFFEL & ESSER CO. MARI 19 V X 3.

Figure 67

H. GEOCHEMISTRY

H. GEOCHEMISTRY

INTRODUCTION

Geochemical investigations at Site 625 included carbonate bomb and coulometer determination of CaCO₃ and interstitial water analysis to determine salinity. Coulometer determination of carbonate was used on only a limited number of samples. Methods are described below. Carbonate bomb samples, in all three holes, were generally taken from the same site as smear slides, and from where physical property samples had been removed. Interstitial water samples were taken from selected cores in Holes 625A and 625B, as 10cm long pieces of sediment collected from the bottom of core section 5, immediately the liner came on deck.

ANALYTICAL METHODS

Determination of Carbonate

Oven-dried samples are ground to 50-100 mesh to ensure homogenization and complete digestion of the sample during analysis. A one gram sample is taken and placed in a carbonate bomb and 4 mls of concentrated hydrochloric acid added to dissolve the carbonate. The partial pressure of the evolved CO₂ is registered in psi and compared with a standard calibration curve of percent CaCO₃ vs. psi. Precision is ±5%.

Analysis by CO_2 coulometer uses 30 milligram of sample powder prepared as above, digested with 2-4 ml 2N hydrochloric acid. The evolved CO_2 is scrubbed, and transferred to a coulometer cell where it dissolves in an ethanolamine solution forming a titrable acid. The coulometer generates a base to neutralize the acid. The amount of current required to complete the reaction is registered, converted to units of CO_2 evolved from the sample, and normalized to percent CaCO₃. Precision is $\pm 1\%$.

The coulometer provides a very reliable, though more time-consuming measure of carbonate content. Results from several samples analysed by both the bomb and coulometer methods fall within 5%.

Interstitial water and salinity

Interstitial water samples are obtained by squeezing the sediment in Carver presses at pressures of 25000-30000 pounds. A few drops of the squeezed water are placed on a temperature-compensated refractometer, measuring salinity (or total dissolved solids) with a precision of ± 1 %.

Carbonate

The CaCO₃ content of analysed samples from all three holes are listed in Table H-1. Values from each hole are comparable at their respective horizons, indicating a certain lateral continuity to sedimentary horizons. Figure H-1 shows a depth plot of percent CaCO₃ vs. depth at Site 625. A number of patterns can be seen, as follows:

(1) There is a steady increase in $CaCO_3$ content of analysed sediments with depth, from around 10 to 20% $CaCO_3$ at the top, to around 60 to 75% $CaCO_3$ at the bottom.

(2) The variations in $CaCO_3$ contents in the sediments in the upper portion of the site (above about 100m BSF) is very much greater than at the bottom (below about 170m BSF). For example, values can vary between 4% $CaCO_3$ and 57% $CaCO_3$ between 40 and 50 meters BSF, compared to variations between 45% $CaCO_3$ and 75% $CaCO_3$ between 220 and 230 meters BSF. This would indicate a greater variety in the types or composition of the sediments in the upper parts of the holes than at the bottom, where carbonate contents are more uniform.

(3) Small-scale patterns of steadily increasing CaCO₃ can be seen, as recognised and discussed in the lithostratigraphy
section of this report. Two are particularly clear, from around 100 to 150 meters BSF, and from 150 to 200 meters BSF. This would suggest steady and repeated changes in the types of sediments being deposited at this time.

Salinity

Salinity results for interstitial water samples are listed in Table H-2, and plotted against depth in Figure H-2. There is a steady decrease in salinity from seawater values at the sediment/seawater boundary (dashed line) to a low of around 32.1 ^o/oo at 75 meters BSF. Values then steadily increase with depth to 35.2^o/oo at 215 meters BSF, the lowermost sample analysed. Results from Hole 625A appear to support the steady increase in salinity in the lower portion of Hole 625B. The salinity low at 75 meters BSF corresponds to changes in sediment physical properties at a similar depth as discussed elsewhere.

TABLE H-1

HOLE	CORE	SEC.	INTERVAL (cm)	%CaCO3
625A	1 1 1 1 2 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6	1 1 2 CC CC 1 2 3 3 4 4 4 5 6 CC 1 1 1 2 2 3 3 4 3 3 4 3 3 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32 30 30 17 54 72 71 48 70 63 30 25 * 74 69 68 61 45 71 71 71 75 56 72
625B	112222222233333333344444444	2 4 1 4 4 5 6 7 2 3 4 5 5 6 7 C C C C C C C C 1 1 2 2 3	98-100 78-80 48-50 88-89 9-11 25-27 78-79 100-102 46-47 31-33 90-91 8-9 9-10 43-44 26-27 20-21 18-19 32-33 43-44 28-29 105-106 10-11 62-64 98-99	12 6 21 19 12 17 57 27 26 46 38 57 20 30 44 20 12 19 13 37 44 43 15

Contd.

	TABLE	H-1	Contd	
--	-------	-----	-------	--

 HOLE	CORE	SEC.	INTERVAL (cm)	%CaC03	
625B	444455555555556666666666666666666677777777	5 5 6 7 1 1 2 2 3 3 3 1 1 1 2 2 2 3 3 4 4 4 5 5 5 6 C 1 2 4 4 5 6 6 1 2 3 4 4 6 6 1 2 3 4 4 6 6 1 2 3 4 4 6 6 1 2 3 4 4 6 6 1 2 4 6 6 1 2 3 4 4 6 6 1 2 4 6 6 1 2 3 4 4 4 5 5 5 5 6 C 1 2 4 4 5 5 5 5 6 C 1 2 4 4 5 6 6 1 2 3 4 4 4 5 5 5 5 6 C 1 2 4 4 5 5 5 6 C 1 2 4 4 5 5 5 5 6 C 1 2 4 4 5 5 5 5 6 C 1 2 4 4 5 6 6 1 2 3 4 4 4 5 5 5 5 6 C 1 2 3 4 4 4 5 5 5 5 6 C 1 2 3 4 4 4 5 5 5 5 6 C 1 2 3 4 4 4 5 5 5 5 6 C 1 2 4 4 5 6 6 1 2 3 4 4 4 6 1 2 3 4 4 4 5 5 5 5 6 C 1 2 4 4 5 6 6 1 2 3 4 4 4 5 6 6 1 2 3 4 4 4 6 6 1 2 3 4 4 4 6 6 1 2 3 4 4 4 5 6 6 1 2 3 4 4 4 6 6 1 2 3 4 4 4 6 6 1 2 3 4 4 4 6 6 1 2 3 4 4 6 6 1 2 3 4 4 6 6 1 2 3 4 4 6 6 1 2 3 4 4 4 6 6 1 2 3 4 4 4 6 6 1 2 3 4 4 6 6 1 2 3 4 4 4 6 6 1 2 3 4 4 4 6 6 1 2 3 4 4 4 6 6 1 2 3 4 4 6 6 1 2 3 4 4 6 6 6 1 2 3 4 4 4 6 6 1 2 3 4 4 6 6 1 2 3 4 4 6 6 1 2 3 4 4 4 6 6 1 2 3 4 4 6 6 6 1 2 3 4 4 6 6 6 1 2 3 4 4 4 6 6 1 2 3 4 4 6 6 1 2 3 4 4 6 6 1 2 3 5 5 5 5 6 C 1 2 3 5 5 5 5 5 6 1 2 3 1 2 3 3 1 2 3 1 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(cm) 62-64 29-30 60-62 24-25 89-91 105-106 81-82 102-103 40-42 74-75 114-115 36-37 71-72 99-100 23-24 73-74 37-38 16-17 72-73 9-10 118-119 121-122 25-26 43-45 48-49 115-117 6-7 133-135 68-70 28-29 70-72 30-31 10-11 65-67 68-69 73-75 75-76 70-71 73-75 31-32 78-80 70-71 68-70 23-25 25-27 99-101	$\begin{array}{c} 20\\ 35\\ 54\\ 37\\ 18\\ 25\\ 48\\ 48\\ 57\\ 41\\ 37\\ 32\\ 57\\ 57\\ 47\\ 49\\ 57\\ 38\\ 50\\ 53\\ 4\\ 25\\ 16\\ 22\\ 8\\ 35\\ 53\\ 10\\ 49\\ 24\\ 35\\ 59\\ 9\\ 25\\ 20\\ 30\\ 63\\ 47\\ 35\\ 42\\ 77\\ 54\\ 77\\ 31\\ 14\\ 40\\ \end{array}$	

Contd.

TABLE H-1 Contd.

 HOLE	CORE	SEC.	INTERVAL (cm)	%CaCO3	
 625B	10 11 11	6 2 5	28- 30 63- 65 83- 85	36 59 42	
	11	5	123-125	43 50	
	12	2	65- 67	36	
	12	3	65- 67	46	
	12	3	117-118	52	
	12	5	63- 65 70- 71	47	
	13	2	75- 77	48	
	13	4	110-112	33	
	14	4	74- 76	38	
	14	6	58- 60	33	
	15	2	119-121	68	
	15	4	50- 52 83- 85	40 60	
	16	4	98-100	54	
	16	6	39- 41	45	
	17	2	50- 52	60	
	17	4	50- 52	76	
	1/	6	50- 52	64	
	18	5	89- 91	60	
	19	2	89- 91	20	
	19	4	60- 62	34	
	19	6	49- 51	39	
	20	4	100-102	67	
	20	5	60- 62	45	
	21	4	50- 52	42	
	21	6	58- 60	60	
	22	2	70- 72	74	
	22	4	119-121	49	
	22	4	138-140	67	
	23	2	71 - 72	76	
	23	3	110-112	74	
	23	4	120-121	50	
	23	5	98-100	74	
	23	6	59- 60	61	
	24	4	90- 92	60	
	25	4	69-71	60	
	26	4	31- 33	50	
	27	4	85- 87	73	

Contd.

HOLI	E CORE	SEC.	INTERVAL (cm)	%CaCO3
6250	 2 1	6	28- 30	12
	1	6	70- 72	22
	1	6	130-132	42
	2	2	140-142	36
	2	5	40- 42	36
	2	5	70- 72	27
	3	2	20- 23	55
	3	4	130-132	21
	3	4	147-149	22
	4	3	68- 70	37
	4	4	80- 82	30
	4	7	23- 25	53
		/		

TABLE H-1 Contd.

* %CaC03 determined by carbonate bomb and coulometer methods. All other samples, %CaC03 determined by carbonate bomb method.

TABLE H-2

HOLE	CORE	SEC.	INTERVAL (cm)	SALINITY (0/00)
 625A	5	5	140-150	33.8
	6	2	140-150	34.8
625B	2	5	140-150	34.2
	6	6	140-150	33.0
	9	5	140-150	32.1
	12	5	140-150	32.3
	20	5	140-150	33.8
	25	6	140-150	35.2

Ca CO3 (% Total Dry Weight)

FIGURE H-1

461510

Mo∑ 10 X 10 THE CENTIMETER 18 X P4 CM KeUFFEL & ESSER CO MAN 19 19 X 1.

FLURE H-2

I. SUMMARY AND CONCLUSIONS

I. SUMMARY AND CONCLUSIONS

Site 625 was located on the West Florida slope in 870 meters of water and had as a prime objective the test of drilling operations and scientific laboratory equipment during the shakedown cruise of the D/V JOIDES Resolution. Drilling, scientific and technical staff were to be trained in shipboard procedures prior to the first operational leg of the Ocean Drilling Program.

Three holes were drilled. The deepest of which (Hole 625B) penetrated to 235.2 meters subbottom. This hole was continuously hydraulic piston-cored (HPC) 197.1 meters through a Plio-Pleistocene section. It was further deepened with the extended core barrel (XCB) to the termination depth in the Lower Pliocene. An earlier hole (625A) had penetrated almost as far (234.9 m subbottom) but recovered only a few wash cores while testing rotary coring. The third hole (625C) attempted to obtain a complete section of the uppermost Quaternary by overlapping HPC cores taken in the previous hole between 5 and 44.5 meters subbottom.

The scientific rationale in choosing the site was that we might date and define a number of unconformities in the seismic stratigraphy that could be expected to be expressed as biostratigraphic gaps. Secondly, we might establish a refined magnetostratigraphic and biostratigraphic history for the area that could be compared with models of eustatic sea level change. Our lack of significant penetration while testing drilling operations prevented our resolving the ages of any regional unconformities. On the other hand, we did recover a continuous Plio-Pleistocene sedimentary section to the Lower Pliocene (NN 18?) that could be of biostratigraphic and paleoenvironmental significance.

Sediments recovered vary from marly nannofossil oozes to calcareous hemipelagic muds. They become generally more calcareous downhole: CaCO₃ content increases from 10 to 20% at the top to 60 to 75% in the Pliocene nannofossil oozes at the base of the hole.

Nannofossil studies suggest that the Plio-Pleistocene boundary might be located between cores 12H and 13H in Hole 625B, at around 92 meters subbottom. This agrees well with the placing of the base of the Brunhes chronozone at 58 meters subbottom from paleomagnetic measurements and the location of the Jaramillo event at 65 meters subbottom. Quaternary sedimentation rates were thus around 51 meters per million years.

The sediment section was divided into two lithologic units based upon a decrease in terrigenous content below 60 meters subbottom and an apprarent cyclicity in carbonate content was observed in the nannofossil oozes of the lower unit. A concurrent change at 60 meters subbottom was observed in most of the physical properties measured at this site.

The cycles that appear present in the Pliocene nannofossil oozes and the major increase in terrigenous input in the Pleistocene indicate environmental changes that we suspect may be relatable, after shorebased studies, to glacial/interglacial climate cycles.

One useful test that was carried out when Hole C was drilled was an attempt to compare closely the HPC core 625C-1H shot at 5 meters subbottom with the lower part of Core 1H and upper part of Core 2H in the previous hole B. A visual comparison between these cores shows that the two sequences match very closely (Figure I-1). Appparently no more than about ten centimeters of material remained unsampled after this double HPC coring. This was remarkable because the ship was working in adverse sea conditions during gale force winds. Support for these findings comes from the GRAPE physical property data and the magnetic susceptibility logs (Figure I-2) which show a similar match between the upper parts of the two holes.

A successful test of the multishot core orientation device was made on Leg 100 (see Section F). A finding that will require some discussion and assessment in the near future was evidence of an apparent twisting of the core material as it enters the core liner.

- Figure I-1 Photograph showing overlap of Hydraulic Piston Cores in the upper parts of Holes B and C. Sections from Hole 625B-1H and 2H compared with Sections from 625C-1H.
- Figure I-2 Comparison of magnetic susceptibility and G.R.A.P.E. logs on cores from the upper parts of Holes 625B and 625C.

EFinal Note: One aim of the science effort on this cruise was the training of the staff scientist group in core and smear slide description. During a particularly intensive session a paleomagnetist was driven to pen the following lines: -

"I got the core describin' blues. I done seen too much nannofossil ooze. 5¥5/2, with j'es a hint o'green, Oh you won't believe the mud dat I've seen. Yeah, day keep on jes a fillin' up dat rack, Core by core dey be a breakin' my back. Days on end I been lookin' down this scope, At plain ole mud to your ordinary bloke. But its more you see, 'cause every day, I count a little more; sand, silt and clay. Grain by grain I scan the stage, Count each bug and determin' its age, But now I've come to that weary phase, Cause it goes on for days and days, But can't nobody say I ain't paid my dues, Yeah, I done described too much nannofossil ooze!"] J. APPENDIX

APPENDIX A-1

APPENDIX A-Z

		BIOSTR	AT. ZO	NE /]_	100	5_	_	625_	A	E		CORE CORED INTERVAL 1R mbsl; 0.0-2.8 mbsl
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAG.	PHYS. PROPS.	CHEMICAL	SECTION	GRAPHIC	Y	SED, STRUCTURES	SAMPLES	This core contains dark grayish brown (2.544/2)
							•3%	.1	T1 c	81		* * *	marly NANNOFOSSIL 202E from 6-18 cm. in Section 1. Below 1, 18 cm, in The uest of Section 1 & in Section 2, the core contain gray (5Y5/1 - 10YRS/1) MARLY CALCAREOUS COZE with minor, ineqular areas of (toyRel/1 - 5Y4/1) Light gray to dark gray 003e. Minor Mattles & burrows occur from 1, 100 cm to 2, 30 cm. A patch of Coral & pterspods occurs at 1, 137 - 141 cm.
								3	емртү	de la colta e la concere a la calendar de la concere			The core catcher combinis olive groy (545/2) CAICAREOUS SILTY CLAY. The sill component includes common-to-abundant guartz & mica. The entrie core has been very disturbed by drilling.
								5					SMEAR SLIDE SUMMARY (%) Section-Interval (cm) 1414425249000 Lith, Dedominant;M=minor; D D D TEXTURE: Sand 0 0 5 2 T Sand 0 0 5 2 T Silt 100 [10] 16340. Clay 90 90 90 90 90 90 90 90 Quartz 4 8 2 20 85 90
							• 162	7		C81	2	*	Foraminifers I I 5 T Nannofossils 40 4035 4525 Diatoms I I Radiolarians T Radiolarians T T T Sponge Spicules T I I Silicoflagellates T T T Piant Debris T T T

B S	Image: State of the second			FOSSIL	CHARA	ACTER	-	100	-		625	A	-		2Wmbsl; <u>2.8</u>
E Q 2 2 5 X X X S For. a. 4 cmlong piece of very defined of very defi	Ξ Ξ </th <th>ME-ROCK UNIT -</th> <th>RAMINIFERS</th> <th>NNOFOSSILS</th> <th>DIOLARIANS</th> <th>ATOMS</th> <th>LEOMAG.</th> <th>YS. PROPS.</th> <th>EMICAL</th> <th>CTION</th> <th>GRAPHIC LITHOLOGY</th> <th>ILLING DISTURB.</th> <th>D. STRUCTURES</th> <th>MPLES</th> <th>LITHOLOGIC DESCRIPTION This core was empty except</th>	ME-ROCK UNIT -	RAMINIFERS	NNOFOSSILS	DIOLARIANS	ATOMS	LEOMAG.	YS. PROPS.	EMICAL	CTION	GRAPHIC LITHOLOGY	ILLING DISTURB.	D. STRUCTURES	MPLES	LITHOLOGIC DESCRIPTION This core was empty except
2	2	F	FG	Ĩ	22	10	PA	Ŧ	5	38		Ĩ	33	S	for a 4 omlong piece of very deformed, light olive gray (5Y6/2) MARLY NANNOFOSSIL OOZE in the core catcher. A gray (5Y5/1) diffuse band "3 mm. thick occurs at the top of the core catcher makerial; several very dark gray (5Y3/1) small specs occur scattered throughout the sediment.
3 BMPTY 4 5 5 6	3									2					
4	4									3	ЕМРТҮ				
SMEAR SLIDE SUMMARY (%) Section-Interval (cm) 0-2 Lith. (D=dominant;M=minor) D TEXTURE: - Sand O Silt 10 Clay 90 Guartz 3 Feldspar 1 Rock Fragments - Mica 1 Clay 90 Calcite / Dolomite - Accessory Minerals (produes) 2	SMEAR SLIDE SUMMARY (%) Section-Interval (cm) 0-2 Lith: 0-0 Sand 0 Silt 10 Clay 90 ComPOSITION: 0 Quartz 3 Feldspar 1 Mica 1 Clay 5 ComPOSITION: 0 Quartz 3 Feldspar 1 Rock Fragments 1 Mica 1 Clay 5 Volcanic Glass 2 Calcite / Dolomite 2 Carrent 1 Poraminifers 5 Nannofosils 5C Diatoms 1 Silicotiagellates 1 Silicotiagellates 1 Silicotiagellates 1									4					
Rock Fragments 1 Mica 1 Clay 35 Volcanic Glass 1 Calcite / Dolomite 1 Cement 1 Pore Space 1 Accessory Minerals/Optiones 2	6 Formation 7 CB1 7 CB2 7 CB2 7 CB1 7 CB1 7 CB2 7 CB2 7 CB2 7 CB2 7 7 </td <td></td> <td>SMEAR SLIDE SUMMARY (%) Section-Interval (cm) Lith. (D=dominant;M=minor) D TEXTURE: Sand O Silt IO Clay Quartz 3 Enleman</td>														SMEAR SLIDE SUMMARY (%) Section-Interval (cm) Lith. (D=dominant;M=minor) D TEXTURE: Sand O Silt IO Clay Quartz 3 Enleman
	Foraminifers 5 Nannotossils 50 Diatoms 1 Badiolarians 7 Sponge Spicules 1 Silicoflagellates 1 Fish Remains 7									6					Rock Fragments I Mica I Clay SP Volcanic Glass Calcite / Dolomite Carrent Pore Space Accessory Minerals Opcours 2

	FOSSIL	AT. ZO	NE /	1	00	_	4	525	A		_	4-Wmbsi;m
FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAG.	PHYS. PROPS.	CHEMICAL	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
FORA	NANN	RADIC	Diato	PALE	SVH9	CHEM				SED. S	SAMP	SMEAR SLIDE SUMMARY (%) Section-Interval (cm) Lith. (D=dominant;M=minoz) TEXTURE: Satistic Sitt Clay Clay ComPOSITION: Quartz Feldspar Rock Fragments Mica Clay Volcanic Glass Colacite / Dolomite Corrent Poraminifers Nannofossils
							6					Feldspar Image: Constraint of the system

	F	OSSIL	AT. ZO	NE / ACTER	100	_	-	625		4		_	<u>5W</u>	mbsl;89.	2-18	7.2	m	bsi
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAG. PHYS. PROPS.	CHEMICAL	SECTION	GRAPH LITHOLO	IIC DGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	This care con gray to light to (5461) MAR FOSSIL 002	SCRIPTION Sisted ray (S Ly NA	of sys ANA min	11)	-	
PLIOCENE					Φ = 6.3 %	• • • • • • • • • • • • • • • • • • •	3	CB 1	TI Y	mm	N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	* * * * * * * *	amounts of 1 and guartz in smear_shi Armough a distir bance i to be modero using de formuo a dir a for was present sections bet and darker intervals. Pir ité oaur and brebs the core. The entra slightly mot minor Biotvick	parte nillin aves o te t parte in e gra sas Thro core ted, lin artion	aite obse obse obse obse obse obse obse obs	net of	ea d s t t	
					4: 5976 4: 1-20 9/cc	nº Calos 74% Calo	6	EWL	TY T1 TY		2 2 2 2 2 2 2 2 2 2 2 2 2 2	* *	SMEAR SLIDE SUMMAR Section-Interval (cm) Lith. (D=dominant;M=min TEXTURE: Sand Silt Clay COMPOSITION: Quartz Feldspar Rock Fragments Mica Clay Volcanic Glass Caly Volcanic Glass Calite / Dolomite Cement Pore Space Accessory Minerals Pyrite Foraminifers Nannofossils Diatoms Radiolarians Sponge Spicules Silicoflageilates Fish Remains Piant Debris	Y (%) 2 . 76 22 1 76 22 1 76 22 1 77 20 28 4 20 28 4 20 28 4 20 28 4 10 3 10 3 10 3 10 3 10 3 10 4 10 4 10 10 10 10 10 10 10 10 10 1	313 4 2 D 2 D 7 12 7 12 7 12 7 12 10 1 1 1 1 1 1 1 1 1 1 1 1 1	500 508 2 508 2 508 2 508 2 508 2 508 2 508 2 508 2 508 2 508 2 508 2 508 2 508 2 508 2 508 2 508 2 508 2 509 2 50 2 50		

Ling State State Conserve of the state
9 Kyl sign (S177). Back hanc Labed 9 Kyl sign (S177). Back hanc Labed 9 Kyl sign (S177). Back hanc Labed 9 C63 TZ 9 Kyl sign (S177). Back hanc Labed 9 C63 TZ 9
Diatoms Radiolarians TR. Sponge Spicules TR.
7

			BIOSTR	AT. ZO	NE / ACTER	-	10	0	-	625		3	-	1	<u>H</u> mbs	: 40	- 7.	2_	mb
SEL Selection Selection </th <th>E-ROCK UNIT</th> <th>AMINIFERS</th> <th>NOFOSSILS</th> <th>IOLARIANS</th> <th>OMS</th> <th>COMAG.</th> <th>S, PROPS.</th> <th>MICAL</th> <th>LION</th> <th>GRAPHIC LITHOLOGY</th> <th></th> <th>LING DISTURE</th> <th>STRUCTURES</th> <th>PLES</th> <th>THIS CORE CON</th> <th>PTION</th> <th>~5</th> <th></th> <th></th>	E-ROCK UNIT	AMINIFERS	NOFOSSILS	IOLARIANS	OMS	COMAG.	S, PROPS.	MICAL	LION	GRAPHIC LITHOLOGY		LING DISTURE	STRUCTURES	PLES	THIS CORE CON	PTION	~5		
SHEAR SLIDE SUMMARY (%) z 3 4 4 SHEAR SLIDE SUMMARY (%) z 3 4 4 SMEAR SLIDE SUMMARY (%) z 3 4 4 Section-Intrival (cm) Metza SLIDE SUMMARY (%) z 3 4 4 Section-Intrival (cm) Metza SLIDE SUMMARY (%) z 3 4 4 Section-Intrival (cm) Metza SLIDE SUMMARY (%) z 3 4 4 Section-Intrival (cm) Metza SLIDE SUMMARY (%) z 3 4 4 Section-Intrival (cm) Metza Status Section Intrival (cm) Metza Status Section Intrival (cm)	TIME	FORAM	NANN	RADIO	DIATO	PALEO	0 2 = 1, 21 Ve 1490	CHEMI	secure	TI	9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SED S	* *	04,44 5 47 272 SOUPY SULTY TO 60045 IN VERY DEFORME SARY TO DAY MST 21/1 TO 5 MST 21/1 TO 5 MST 21/1 TO 5 SECTION 3 AND FORMS ST 4/1 TO (SY 5/1 TO CALANIONS AUD TO C CATEMEN (C	SIL SIL	2 2 2 2 2 2 2 2 2 2 2 2 2 2	(a)	
6 1 Section-Interval (cm) Mail 30 854/2 1 Section-Interval (cm) D D P D 5 Sand 0 0 0 0 D 5 Sand 0 0 0 0 D P P 5 Sand 0 0 0 0 D D P P D 5 Sand 0 0 0 0 D D D P P D </td <td>PLEISTOCENE</td> <td></td> <td></td> <td></td> <td></td> <td>RouthES</td> <td>@ \$ = 1,63 V= 151</td> <td>•6</td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td>SMEAR SLIDE SUMMARY (%</td> <td></td> <td>7.4</td> <td>4</td> <td></td>	PLEISTOCENE					RouthES	@ \$ = 1,63 V= 151	•6	4					*	SMEAR SLIDE SUMMARY (%		7.4	4	
	H-								5					*	Section-Interval (cm) Lith. (D=dominant;M=minor) TEXTURE: Sand Silt COMPOSITION: Quartz Feldspar Rock Fragments Mica Clay Volcanic Glass Calcite / Dolomite / Cono Cement Pore Space Accessory Minerals / Oppeues Pourz Foraminiters Nannofossils Diatoms Radiolarians Sponge Spicules Silicoffagellates Eich Bemains	2 0 15 5 55 1 7 7 7 5 7 2 1 6 7 7 7 5 7 2 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	42 0 24 74 15 7 5 5	

		BIOSTR	AT. ZO	NE /		1	DO	_	1	,25	B		2	Hmbsl; 7.9-17.4_mb
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAG.	PHYS, PROPS.	CHEMICAL	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	Gray (545/1) to olive gray (545/1) to olive gray (544/2) calcareous nemifelagic mud imoffled
							0 25 1 = 2 80	02.02	1.	TV G	51	sss	*	through out; some disting by news dark brown (sylesh in color. Black pyrite spects scattered through out and occasionally concentrated in lenges as in section 4 (syl-ston
							v= 15		2	d	5	s 5	*	At 85 cm in section a gradual transition to gray (545/1 and 546/1) marker narroo tossi 1 ooze occurs. Foram and small (21 mm) calcoreous shell framer constitute the sand fraction in this materia
TOCENE					24	Thruntles	SPH = V = 15 0 0 0 221 = V = 152	30g0	3	Tar a	B	5 5 5 5 5	**	Graded keds are noted at 94,98 and 101 cm in section 4. Burrow moth and scattered pyrite flav are seen throughout the interval. The section is relative undistricted by orrilling Physical orperties whole public sample way talaw from section 0,140-150 cm; interstition water sample from section 5 (140-150 cm;
PLEIST					14		₩ ₩	RT 000	5	TN CB 1		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	*	SMEAR SLIDE SUMMARY (%) z 4 4 5 6 Section-Interval (cm) D AR 804780 Lith, (D-dominant;M=minor) D D D D TEXTURE: Sand Sand 4 5 5 2 30 2 Silt 26 5 5 2 30 2 Clay 70 f0 90 58 20 32 ComPOSITION: 2 2 7 2 7 Quartz 5 60 70 70 70 70 70 70 70 70 70 70 70 70 70
							1051=1 SE=P 0	072	6	TP 18			*	Calcite / Dolomite Cement Pore Space Accessory Minerals Foraminifers Foraminifers Radiolarians Sponge Spicules T / T / 1 /
								0200	7 cc		1		*	Fish Remains Plant Debris Calc. skel. Grags 2 1 T 1010 algal alsts TT 3 3

		BIOSTR	AT. ZO	NE /	1	00	_		685 _	B	-	31	+ (1-7) _	mbs: 7.4-26.9
E-ROCK UNIT	IAMINIFERS	NOFOSSILS	DIOLARIANS	TOMS	EOMAG.	S. PROPS,	MICAL	TION	GRAPHIC LITHOLOGY	LLING DISTURB.	I. STRUCTURES	NPLES	Core we plastic 11	ogic description as taken without ner-the liner nmered into
ENE	FORAN	NANIC	RADIO	DIATO	PALEO	J SAHd	CHEMI	seculo	T2 681		SED. S	k k	was have the con recover in nume section to high section of mark gray (ST gray (ST))))))))))))))))))))))))))))))))))))	nmered into e barnel after f resulting rous short s and mater austurbance of austurbance of his ind consist y nannotoss of or banded ysti) and oliv systz). e spects and stimm) shull s throughout. e ours honiging a c, alternat the gray syste envo for i bore. 6 and 8-9. is continued t form]
PLEISTDCE					Sahunas		012 012 012		TV (6)		×	*	SMEAR SLIDE S Section-Interval (Lith. (D=dominar TEXTURE: Send Silt Clay COMPOSITION: Quartz Feldspar Rock Fragments Mica Clay Volcanic Glass Calcite / Dolomit Cement Pore Space Accessory Minera Accessory Minera Accessory Minera Accessory Minera Accessory Minera Accessory Minera Accessory Minera Accessory Minera Accessory Minera Sponge Spicules Silicoflageilates Fish Remains Plant Debris Calc Skel	SUMMARY (9) 5 5 6 7 cm) $B 9 (932, 20)$ B 5 5 2 5 2 5 2 I (0) (0 6 6 5) S 5 2 5 2 5 2 I (0) (0 6 6 5) S 5 2 5 2 5 2 I (0) (0 6 5) S 5 2 5 2 5 2 I (0) (0 5 5) S 5 2 5 2 5 2 I (0) (0 5 5) S 5 2 5 2 5 2 I (0) (0 5 5) I (0) (0 5) I (0) (0 5) S 5 2 5 2 5 2 I (0) (0 5) I (0) (0) (0) (0) (0) (0) I (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

•

	-	BIOSTR	AT. ZO	NE / ACTER	_	LEG OC	<u> </u>	4	SITE	B	-	3	ORE 1(8,9,α) CORED INTERVAL mbsl;
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAG.	PHYS. PROPS.	CHEMICAL	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
DCENE	FO	- ·	R.P.		He's Pra	Ł	+5	8	T2 (8 T2 (1		38	* *	
PLEISTO					BRUNHE		020 012 019		τ2.	78		***	SMEAR SLIDE SUMMARY (B, 9, a, a, a) Section-Interval (cm) Lith, (D-dominant/M=minor) Didth, (D-dominant/M=minor) TEXTURE: Sand Sand io Silt Clay Silt Clay Clay ComPOSITION: Quartz B 2, 7, 1 Feldspar Rock Fragments Mica Clay Calcite / Dolomite Carres Space Accessory Minerals Qragomile T Pore Space Accessory Minerals Qragomile T Portile T Portile T Padiotarians T Sponge Spicules 1 Silicoliageilates 1 Fish Remains T Plant Debris 2, T Calcier Skd frates 1, S

		FOSSIL	AT. ZO	NE /	-		2_	1	25		3		4	Hmbs/26-9-36-4
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAG.	PHYS, PROPS,	CHEMICAL	SECTION	GRAPH	HIC OGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION Gray (54571) (5461) mai nanno(0551 0020 sector 1 through 3, 50m bdo highly disturbed inter
						X = 1 69 = R @	05% 05% 05%	2	τ2	cb 1	\$	~ ~ ~ ~	* * * *	in Section 1 (0-15 cm). Seal ment grades into calconeous hemitelau huid in section 3 Cat 15 cm) through section 4 (60 cm). Small (81 m skelltal Fragments are the fredominant calcon component in The intere At section 4 (60 cm) 1 mud grades back into marky henno fossil 00 zer similar to the Upper unit in The core of light (54711), high Callog content intere assimilar to section 5 (335 cm) to section 6 (20 cm). Discrete buttows a
TOCENE					BRUNHES	0 4= 13 V= 1548	000	3	T	- B 4	*	N N N N N N N N N N N N N N N N N N N	*	more prominent in darka intervals of nud, while mothing is seen in the objection intervals. A 30 cm organic geochemistry sample w taken from section 6 (120-150 cm). Pyrite occurs as spa throughout, the core occasionally concentrate into small Lenses (~ 1 cm across).
PLEIS						= 1540	03378	5	p2	cB I		2 2 2		SMEAR SLIDE SUMMARY (%) 2-3-45 Section-Interval (cm) 62 769 63 81 Lith. (D=dominant,M=minor) D
						251 - 125 V	972 972 06	6.	T2 0	B1.		ss	*	Volcanic Glass Calcite / Dolomite homles Cement Pore Space Accessory Minerals Accessory M
								7	T2	CB 1	10	s s	*	Silicoflagellates Fish Remains Plant Debris calc. skoleba (60205-10/0 10/0 5 algol cysts 1 2

•

		BIOSTR	AT. ZO	NE /	1	00	_	4	25		3	-	_	5Hmbs1;3/2,440,9_m1
TIME-ROCK UNIT-	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAG.	PHYS, PROPS.	CHEMICAL	SECTION	GRAI LITHO	PHIC LOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	Dive gray (5452) calcana Mud in settin 1, Top 20 cm, section 1, an high disturbed and so pop
						0 4 65 4= M49	ప్రంశ్రం	1	τ2	- 1	000-	5 5	**	Hant Eline nay (54612) marky nervice (5511 core at section 2 (70 cm), which extends through the remainder of the core.
						V= 1567	స్తేత్తారి	2	12	CB 1		> 5 5 5	*	Sediment is burrow- Mother Throughout with nemerous discrete horizontal burrows Visible. Lighter colored Units appear to be associated with higher Ca CO3 content. Arite specks and small
NE						19 = 4 Q	077 072 0972	3	T2 T2	CB 1 (B 1		5 5 5 5	*	(219nm) Schell and skeletal, fragments are scattered throughout properties whole round sample was taken from section 3 (140- 150 cm).
PLEISTOCE					BRUNHES			4						SMEAR SLIDE SUMMARY (%) 1 2 2 3 3 Section-Interval (cm) 20 (c27/ 1)/ Lith. (D=dominant,M=minor) D D D D D TEXTURE:
24					-			5						Silt State Silt State COMPOSITION: State Quartz T Feldspar T Rock Fragments T Mica T Clay Color Volcanic Glass T Calcite / Dolomite homites I Carrent I Por Space Accessory Minerals Cangenite T
								6 7	T2	481				Foraminifers 5 18 5 10 00 5 Nannofossiis 6 20 50 50 40 90 Diatoms Radiolarians Sponge Spicules T T T Silicoflagellates Fish Remains 7 Plant Debris Calc . Stole to 1 6005. 5 10 T 10/0 15 Calc . Stole to 1 6005. 5 10 T 10/0 15

		BIOSTR	AT. ZO	NE / ACTER	1	LEG	2_	1	625	Ē	OLE	_	4	CORE CORED INTERVAL 24mbs1.40.9-50.4 mbs
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAG.	PHYS. PROPS.	CHEMICAL	SECTION	GRA LITHO	PHIC	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION Core 6 is highly distribut in server intervals by flow, in (partialarly sections 1,3 and 4).
PLEISTOCENE					BRUNHES	$\delta d = 1.15$ V = 1555 $\delta = 1.24$ V = 1555	20 1 1 20 20 20 20 20 20 20 20 20 20 20 20 20		T2 T2 T2 T2 T2			× × × × × × × × × × × × × × × × × × ×	*** * * * * * * * *	Sechow 1 may ke entivaly flow in mate risel. marly name risel. marly parmo fossi 0020, gray to 0100 pray (5-551 to 54512 Jacune down through sector 4 (30 cm), where a pradual transition (n to darker calconeous herm pelajec mud (5441)) dark may in color, is seen through sector 5 (SD cm). At twist point a gradual thansition back to mary to 01000 pray mary to 00000000000000000000000000000000000

LITHOLOGIC DESCRIPTION LITHOLOGIC DESCRIPTION REAL STREET S	International Internaternaterna Internationalis and and and and an	LITHOLOGIC DESCRIPTION ILTHOLOGY	Цитиовой селиние Сонимание			BIOSTF	RAT. ZO	NE / ACTER		NU		6	SITE 25	н	B	_	_	CORE CORED INTERVAL 7H mbsi; 50.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ID SI <	TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAG.	PHYS, PROPS.	CHEMICAL	SECTION	GRAP	HIC .OGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION This core ontains dark gra dive gray abarions himiged much from section 1, 0 cm to
1 1 <td>Ц 3 3 Совсанило наличиени ними 1 3 1 1</td> <td>Image: State of the state o</td> <td>Image: State of the state o</td> <td>1</td> <td>/</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*50</td> <td></td> <td>72</td> <td>u 94</td> <td>0001</td> <td>\$\$ \$\$ \$\$</td> <td>*</td> <td>2, 35 cm (1 graduing but occurs at from 2, 30 cm 5 2, below which olive gray & gr (5 45 / 1 and 546 / 1) me calcareous ong occurs. a increase in carbonate (fo mannos and skeletal fragme is applient from some shi result continuing down con write the top of Notion 6.</td>	Ц 3 3 Совсанило наличиени ними 1 3 1 1	Image: State of the state o	Image: State of the state o	1	/						*50		72	u 94	0001	\$\$ \$\$ \$\$	*	2, 35 cm (1 graduing but occurs at from 2, 30 cm 5 2, below which olive gray & gr (5 45 / 1 and 546 / 1) me calcareous ong occurs. a increase in carbonate (fo mannos and skeletal fragme is applient from some shi result continuing down con write the top of Notion 6.
	АТ 6,65cm. 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Image: Section - Interval (cm) S Image: Section - Interval (cm)<	ID O S S S ID S S S S ID S						7		* 492	2	T2	СВЧ	1	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	*	Colcareuro tampilagi mud from 6,0 cm to 6, 105 cm from 7,0 cm to 7,22 cm Moderate to heavy historic is orient through this co a very large brutis is pose from 5,50 cm to 3,85 cm Rysile occurs as small f scattered throughout the core a mall (1-2 cm) pockets pu
	20151314 XV XV XV XV XV XV XV XV XV XV	O O I O I O I O I O I O I O I O I O I O	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ш С П								3				s s sss		ot 6,65cm.

		BIOSTRA	AT. ZO	NE / ACTER	4	00	=	-	625		B	-	-	<u>8H</u> mbsl; <u>58,5</u> n
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS'	PALEOMAG.	PHYS, PROPS,	CHEMICAL	SECTION	GRAF	HICLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION This are consist of humipdagic coloaners much to mark coloaner ore, the generat porce of coloaners
							*	1	72	ਲੋੜ		55 55 55		at 1,68cm 5 778 at 6,78,6 septimen of color enorgy : Lifet dive gray (54611) & divegray (545/2) & gray (547/1), occurs access this enternal but me regular spacing is soon in this regular spacing is soon in this regular so could we found at 1,10
			4				* 30%	2	72	64	 	SS SS SS		right occurs mill specks distud interval as voy small specks distud on the split face.
							*66	3	T2	Свч		S S S S S	*	
STOCENE	CC	61 14			4TuVAMA		粮菜碗	4	TZ			\$ \$ \$ \$ \$		
PLEI	2 2	<i>R</i> ~			W			5				S S S		SMEAR SLIDE SUMMARY (%) Section-Interval (cm) Lith. (D=dominant,M=minor) TEXTURE: Sand O Silt Clay CoMPOSITION: Quartz Peldspar Rock Fragments Mica
							をす * * * * * * * * * * * * * * * * * * *	6	TZ	е - 284	,H	S S S		Ciay 33 Volcanic Glass Calcite / Dolomite 2 Cement 9 Pore Space Accessory Minerals 1 Rycite 1 Foraminifers 10 Nannofossils 30 Diatoms 10
								7	VOI Tz d	р Свч	5	S		Radiolarians Sponge Spicules Silicoflagellates Fish Remains Plant Debris Arrante needles

ł

		FOSSIL	CHAR	ACTER	 _	100	_	-	625 P	5		_	9Hmbel; <u>67,5</u> mb
TIME-ROCK UNIT-	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAG.	PHYS. PROPS.	CHEMICAL	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							****	.1 	T2 CB4			*	This cas consists of an undistabled sequence of marky man colcarons or to colcarons herripolagic much the little logical change or gradational with multi cold change. From 1,0-1,67 cm light dive one, (5/6/ much male works ory to Olive one (5/4/2) at 6,30 cm. Ho sadiment is activities mother with Poophyous burrisus common the subment. Fragment of colcaron Medital fragments are common one can be seen on the salt becalle core fragment of pype an bis common on the active burgare.
PLEISTOCENE		~ 22 19	•				* 317	3	Т2 СМ				SMEAR SLIDE SUMMARY (%) & 6 Section-Interval (cm) + 102/23
							*	6 - 7	TL T2 Volto	-454		*	Lith. (D-dominant, M=minor) TEXTURE: Sand Sand Sand Silt CoMPOSITION: Quartz COMPOSITION: Quartz ComPOSITION: Quartz Rock Fragments Mica Clay Volcanic Glass Calcite / Dolomite Carent Pore Space Accessory Minerals PVRITE Foraminifers TOTT Nannofossils PVRITE Foraminifers Sponge Spicules Silicoflagellates Fish Remains Plant Debris T Calcite Code

and the second se

LITHOLOGIC DESCRIPTING SUBJECT DESCRIPTING SUBJEC	Introductor Introductor <thintroductor< th=""> <thintroductor< th=""></thintroductor<></thintroductor<>
1 1 <th>Image: State of the state o</th>	Image: State of the state o
402 (546/1) marts calleau Lingro of sand, metrical Milital clasts) 5,980m-CC, 370m : gray (545/1) marts 003.8. 3 Core 3 had a broken	UNDOLS RANK ALDE SUMMARY (%) 2 SMEAR SLIDE SUMMARY (%) 3 SMEAR SLIDE SUMMARY (%) 3 SMEAR SLIDE SUMM
	D) 0- 172 СВЦ (В) 172 СВЦ (В)

		FOSSIL	AT. ZO	NE / ACTER	-	100	_	_	625		В	_		11 Hmbsl; _83,72
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAG.	PHYS. PROPS.	CHEMICAL	SECTION	GRA LITHO	PHIC	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION This core consists of marting marting from any which is construction of marting lith occursional large burgerouses, 1,0-1,30cm gray (5471) decomposition of the marting of the decomposition of the marting of the market of the market of the decomposition o
									T2	СВЧ	000	SS SS SS	and the second second	13 30cm. Point rich Mark the are present at 1,41 cm, 1,90m and 13 cm 13 cm manno-breen our changing and 345/1) green at 25 5cm and again 5 light only (546/1) at 42 cm. A interval form 2,42 cm 5,62
ISTOCENE							* 912	2		свз	a a .		*	a gray (5561) and contains of which are width in the surface of ONE (son Mod sing white grains). Gra ungraded forem sond, do gray (544/1) Joint at 5,92 5,98 cm, reproso an observed mi the grand layor. The interval from 6-23 to 6-1 contains Several color changes, alternating from gray & light of (545/1) to 546/1) accors 5 to 8 cm intervals. The core cather contains grag (545/1) marks manner-forem one ontain an 10° ring and probably oncential annual the ingenalic public cover.
lower PLE		~ NN 19						4	Τ2			\$ \$ \$ \$ \$ \$ \$ \$		SMEAR SLIDE SUMMARY (%) 2 5 5 5 Section-Interval (cm)
							*59 *5	5			-IP	うちちらい	**	Sand 60/40/3/40 3/40
								6.83	T2	C83) {		Calcite / Dolomite
								7	Voil	C83	30.			Sponge Spicules Silicoflagellates Fish Remains Plant Debris Colcerence Sceletel Gray, 30 So 13, 20 Orsegning, manufast 1 T

Ĵ.

		BIOSTR	AT. ZO	NE /	· _	1 CEG	_	_	625		B	.E		_	2H	m	bsl;	92	32		nbe
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAG.	PHYS. PROPS.	CHEMICAL	SECTION	GRA LITHO	PHIC		DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHO His core is maily means calcareness, o core, potti	LOGIC DESCR - foran a By E m y j obse	aletter Re D Lasty	inly Man	un u	die tombo	the set
							* 3%	1	Τ2	c	65	W	s	*	analitical color char au the basis 1,0cm b gray men 030 3,75cm (544/2) 3,120cm gray C546 4,145cm gray (546/ 0029.	and any mys but , for Man 3,55cm by Assam 5 3,120 marky cut 5 9,144 (1) mark 10 CC, 22 1) mark	ing	the de star	the set of the set	An man object	and the second s
EN C							*	3	T2	CES	св 4		5	*							
r PLIOC		81 22					*22	4	T2.	යය	CB 4			*							
upper		2					*城	5	T2		B1		{ }	*	SMEAR SLIDE Section-Interval Lith, (D=domini TEXTURE: Sand Silt Cisy COMPOSITION Quartz	SUMMARY ((cm) ant:M=minor) :	%) 34 0 58 42 10	2 4 5 22 23 5			IN M L NOR
							*	6	T2 T2 T2	CP	31		\$ {	*	Feldspar Rock Fragments Mica Clay Volcanic Glass Calcite / Dolom Cement Pore Space Accessory Minei Register	i ite rals	45	Я 5 1			2
							262		Va Tz	L CR			<		Foraminifers Nannofossils Diatoms Radiolarians Sponge Spicules Silicoflagellates Fish Remains Plant Debris	al for marte		525	2 E	7	50
		FOSSIL	AT. ZO	NE /	-	100	_	-	625 B	2	1	3Hmbsl;_100.89n									
----------------	--------------	--------------	--------------	---------	-----------	--------------	----------	---------	-------------------------	--------------------------------------	---------	---									
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAG.	PHYS. PROPS.	CHEMICAL	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB. SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION This core consists of marily menno fossil core, It is uniformly motiles monophit with on menors in the									
							*75	2	TI CB4		×	minuter of burners in the porch sector 2 and the top of sector 3. The Ethologic change are gradient and an defined by change in color. 1,0 to 2,136 is an dive gray (586/2) marks mannersil ag 2,136 m to 4,160 mis the some but distants of the con- but distants of the con- the distants of the con- the core is darker (585/1) Rynte occurs in uniformly distants black straks. Nell fragment occur morecline on the split face of the core									
UPPER PLIDCENE		~ NN 18					* 3972	3	72 C81 2010 T2 C6	s s s	*										
								6	06 12 CB) { { { {		SMEAR SLIDE SUMMARY (%) 4 Section-Interval (cm) 5740 Lith. (D=dominant:M=minor) 0 TEXTURE: 10 Sand 10 Silt 10 COMPOSITION: 10 Quartz 5 Feldspar 10 Rock Fragments 11 Mica 11 Calcite / Dolomite 11 Calcite / Dolomite 11 Canent 11 Pore Space 12 Accessory Minerals 13 Portes 13 Foraminifers 17 Radiolarians 13 Silticofilageilates 14 Fish Remains 14 Plant Debris 17									

		BIOSTR. FOSSIL	AT. ZO	NE / ACTER		DC	2	-	626	B	_		14mbsi;	09.64
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAG.	PHYS, PROPS,	CHEMICAL	SECTION	GRAPHIC LITHOLOGY	DRILLLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTIO This core canton very homosenan manuaposil core fyrila brages or	s more
						B B = 67 VE ISTL		2	(B3 T2		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	*	Abelfe stelvits, in core, hale a size of un and 2 m This core should a This core should a this core should a dight by dist whe dight by dist whe dight by dist whe dight by dist whe from gray (576/1) a to high ballous; Section 1; grad from gray (576/1) a to high ballous; Section 2; grad from gray (576/1) a to high ballous; Section 3; gray (Section 3; gray (Section 3; gray (Section 3; gray (Section 4; olive gray (0-16 cm) 5 y 2.5 y, d a 25 cm, 375/, gray	all the all the all the all the all the all the all of all all all all all all all all all al
						0 0= 10 1597	38%	3			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	* *	5752 alice query 420 - Section 5: 575/2 C (0-55) then 575/2 C (55-96) then 575/1 - Section 6 574/2 don (0-55) our 574/2 don (0-55) our 574/2 don Core cocher: 575/1 gr	-160) Iliz-yu dork yu grun Ase ta guny na (55-
						2 = 1:35 V= 1561	339%	6	CB3 T2 CB3 T2		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	*	SMEAR SLIDE SUMMARY (%) Section-Interval (cm) Section-Interval (cm) TEXTURE: Sand Silt 22 [18] Clay ComPOSITION: Quartz Feldspar Rock Fragments Mice Clay Volcanic Glass Calcite / Dolomite Careet Pore Space Accessory Minerals HVLMa Port Space Accessory Minerals Protogenuite Sitomis Quarts Siticofiagellates Silicofiagelates Silicofiagelates	1 20 1 20 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5

LITHOLOGIC DESCRIPTION OF THE STATES	iption it ap a il obje distincted its present its present its present trians elile on entrie to (0. trun artout u the 16720, tru
the split face with the split spli	artout artout artout artout
	6/1) in the in section 3 is growy into a growy in core catcher
6 499 − 6 499 − 4 − − − − − − − − − − − − − − − − − − −	
SMEAR SLIDE SUMMARY (% Section-Interval (cm) 4 Lith. Ordominant;M=minor) 1 Sand 7 Silt 1 Clay 8 COMPOSITION: Quertz 7 Feldspar Rock Fragments Mica Clay 6 Volcanic Glass 1 Calcite / Dolomite 1 Cerrent Pore Space 4 Accessory Minerals 1 Pore Space 4 Accessory 4 Accessor 4 Accessory 4 Accessor 4 A	6) 60 70 75 70 75 70 75 70 75 70 70 70 70 70 70 70 70 70 70

		BIOSTR	AT. ZO	NE /		1	.eg	-	625	н	B	_	_	CORE CORED INTERVAL mbsl; <u>127-36</u> mbsl
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAG.	PHYS. PROPS.	CHEMICAL	GRAP LITHOL	HIC .OGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION This care cantoning on MOUTE normalional dose with pyrite and shelp allouits.
						<u>651</u> :X	۵ فر، دا ۷۰ ۱۵۶۶ ص		СВЗ	T2	000	1000 S S S S S S S S S S S S S S S S S S		the Core is unstand by duilling in the second Activing in the second by live of well of very dotumbs by live plant activities: in section 5 (40-60 cm) oud 6 (40-55) The chunges of colorurs arcs as follows: - gray (575/1) in the Detrie I and 2-3 - light plus gray (575/2) (0-60 cm) clipt plus gray (575/2) (0-60 cm) cli
					*	M = 145	0 02 50 V= 1558	44	СВЗ	T2		5555555		
						. NET - N	0 2 = 15 V = 1541	6 6 6 C C C C C C C C C C C C C C C C C				S S S S S S S S S S S S S S S S S S S		SMEAR SLIDE SUMMARY (%) Section-Interval (cm) 42/4/4/2 Lith. (D=dominant,M=minor) D TEXTURE: 5 Sand 2 5 Siit 02/10/15 Clay 72/40/82 COMPOSITION: 0 Quartz 5 3.6 Feldspar 1 Rock Fragments 1 Mice 2 Clay 57 Volcanic Glass 1 Catcite / Dolomite 1 Cement 1 Pore Space 1 Accessory Minerals 1 Shanotossils 1 Diatoms 1 Radiolarians 1 Sponge Spicules 5 Silicoflagellates 5 Fish Remains 1 Plant Debris 1

		BIOSTR	AT. ZO	NE /		11	LEG)		SITE 625	н	B			CORE CORED INTERVAL
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAG.	PHYS. PROPS.	CHEMICAL	SECTION	GRAPH LITHOLO	IC)GY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION This core very homo dervise by the its compo- siltion consist of a morely name possible of a
							0 0 62 62 1 569	60%	2	CB1	T2		※ くゆくしくしょく	*	traces and tugherite Nordules (one at 2:15 an one at 3: 80) it combains So a lot of shelfs delowed Alus core shous atter gradual churges of colores from lightable gray 1576/2) to glize gray 1576/2) to glize at 10 an of Olive gray 15752 to glize gray sediments. Settion 5 contains a 578/2 light olive gray sediments. Settion 6 condists of a olive gray sediment (0-160) the end of this serian (140-150) and the core (a cher condition 5757, light gray moly monubional opp
					2		6 de 61 V2 1558	; 761	4	CBI	T2		もいいいい	*	
							0851 =1 551	-	5.			1			SMEAR SLIDE SUMMARY (%) Section-Interval (cm) Lith. (D=dominant,M=minor) D TEXTURE: Sand G Silt Clay COMPOSITION: Quartz Feldspar Rock Fragments Mica Volcanic Glass Calcite / Dolomite [2]
							0 02	64%	6 7 cc	CBI	HAV HAV	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*	Cement Pore Space Accessory Minerals Parvia Di 1 Di Accessory Minerals Parvia Di 1 Di Accessory Minerals Parvia Di 1 Di Accessory Minerals Parvia Di 1 Di Foraminifers Si 10 Nannofossits Silicoftagellates Fish Remains Plant Debris

		BIOSTR	AT. ZO	NE / ACTER	۱ [LEG	_	:	62.5T	HOK.			Ĵ	0RE	CORED mbs	INTERVAL	m
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAG.	PHYS, PROPS.	CHEMICAL	SECTION	GRAPHIC LITHOLOGY	¥	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGI This Care Morly no cose on trace, on	Can ynof a sh	Walu washil ous p	y un
						e 1597		3	(В) Т2	2	MMM MM MM	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Madule of Second S debret sheet the core s Size is sit list num a The fala are the A changes a changes a changes a changes a changes a changes a changes a changes a section 5 yelding in the C - Section 5 yelding in the C - Section (5 y 5/2) of gray 5 y light grad light grad - Core tou	1261 gettiss prid majo majo for sing 2: L 3: 6/2 4: Lel 4: Lel 4: Lel 4: Lel 6/1 Lig 1(575), 1579, Les 1: C	their their their their their hom hom hom hom hom hom hom hom	he dan ullen es a a a a a a a a a a a a a a a a a a
*				5		8 12 11-212 YE 1563 0 82 1.81 YE	4 <i>6</i> %	- 5 - 7 - cc	CBI	2		sources success	*	SMEAR SLIDE SUM Section-Interval (cm) Lith. (D=dominant.M TEXTURE: Sand Silt Clay COMPOSITION: Quartz Feldspar Rock Fragments Mica Clay Volcanic Glass Calcite / Dolomite Cement Pore Space Accessory Minerals Play Foraminifers Nannofossils Diatoms Radiolarians Sponge Spicules Silicoflagellates Fish Remains Plant Debris	MARY (%) =minor) C 64 64 64 64 64 64 64 64 64 64	бба b 10 60 20 7 7 336 1 1 2 5 937 7 7 7 7 7 7 7 7 7 7 7 7 7	

		BIOSTR	AT. ZO	NE / ACTER	_	LEG	2	_	626	= _	B	_	_	CORE CORED INTERVAL mbsl;m
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAG.	PHYS. PROPS.	CHEMICAL	SECTION	GR	APHIC	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION This care countering in Monty manisfield 003e in scilicity 1 who become griending of alcoreous
						0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	203	3	СВ 1 С В 1	T2 T2	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*	Chemipplage mind in setting 2 and 3 cand came lived to a mart manapus 2030 in the rest of the Care, The master importa- live tore chundriked live turbioklous. The core chundriked live turbioklous. The core fraces and print concentrations and Ahelfs debrits [0.5 to 2 mm The manors changes are Chundered colour, and or as hollous: Section 2: (575/1) gray 0-12 Then (576/1) dark gray 20-12 Then 576/2 alie gray ito- 576/2 alie gray ito-110, the 576/2 alie gray Section 5: (575/1) gray at 150 Section 5: (575/1) gray of 9. Men 576/2 alie gray at 150 Section 5: (575/1) gray of 9. Men 576/2 alie gray at 150 Section 5: (575/1) gray of 9. Men 576/2 alie gray at 150 Section 5: (575/1) gray of 9. (575/2) at 26 and 150 Section 6: (575/1) gray of 9. (575/2) at 26 and 150 Section 6: (575/1) gray 0-70 Section 6: (575/1) gray 0-70
						0 8= 1.84 V= 1590	39%	5 6 7	CBI CBI		, , , , , , , , , , , , , , , , , , ,	ないないことしてしているないない	*	SMEAR SLIDE SUMMARY (%) Section-Interval (cm) Lith. (Dedominant:M=minor) D TEXTURE: Sand Silt Glay ComPOSITION: Quartz Peldspar Rock Fragments Mica Clay Volcanic Glass Calcite / Dolomite Carent Pore Space Accessry Minerals Staffel of Arragments Nannofossils 30 20 Diatoms Radiolarians Sponge Spicules Slicoflagellates Fish Remains Fish Debris

	B	OSSIL	CHARA	NE /		2	2	_	624 .	B	_	1	2.0mbsl;	
TIME-HOCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAG.	PHYS, PROPS.	CHEMICAL	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION This care should a gradual churye for a musicly manights give in pedicien 67-31	an il
	Ē	2				04 0 82 1.72 V2 1592	67%		CGI		20 20 20 20 20 20 20 20 20 20 20 20 20 2	*	Loo a Calcareaus him pello gir mud Lu flie De Wiron 6 ond in 4 Core Cacher. The section 1 and 2 Wery distributed by m und drilling. flie care curlowing to traces - und currents our is to Dhells old (Dize: 0, 5 mm to 3 mm exept flie lithalogy ch the calcring the ore shoys the calcurs as pallous: - Section 1-2: 4 m (5) Section 5: 0-26: dor drace for y (1); 24-5 m (5) Lith olive from (2); 108-12 light alive gray (30-80: 5% light alive gray (5) Section-1: 575/2 alight gray (5) (30-80: 5% light alive gray (30-8	the sol to
						6 \$2 1.83 v= 160.	239	6	B T2 (B) T2		s s	*	Useriz 2 Feldspar 1 Rock Fragments 1 Mica 26 Clay 26 Volcanic Glass 1 Calcite / Dolomite 5 Calcite / Dolomite 5 Pore Space 1 Accessory Minerals 1 Foraminifers 5 Diatoms 5 Radiolarians 5 Shonge Spicules 5 Silicoflagelates 5 Fish Remains 1 Plant Debris 174	

		FOSSI	CHAR	ACTER]	-	100	-		625		25	B	1	<u>ELHmbsl;</u>
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAG.	PHYS, PROPS,	CHEMICAL	SECTION	GRA LITHO	PHIC LOGY	DRILLING DISTURE	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION SEDIMENTS CONPOSED OF MARLY NANNOFOSSIL ODZES WITH SIGNIFICANT CHANGES IN THE PROPORTION OF CONSTITUTIONS
							v= 1583			сві	12	5	555555		LOLOVE VARIATIONS THROUGHON MATORITY OF SEDITENT ABOV 1.30 M A LIGHT OLIVE GRAY (S BELOW 1.30 M OLIVE GRAY (S GRADING INTO DARK GRAY (S GRADING INTO DARK GRAY IN THE MIDDLE OF SECTION 4
							69 - 60 ££' - 8	46%	2	сві	T2		ŝss	* 90	FUNITION BETWEEN BUT ON ARE GRADATIONAL, BUT ON A VERY SHART INTERVAL AT TO IN A HIGHLY RURROWED REC SELTION & SEDIMENTS ARE A LIGHT OLIVE GRAY (SY 6/2) COL BURROWS COMPONLY SEEN AN FROM AREAS DISTURBED BY DRILLING, CALCAREOUS FRAG SEEN THROUGHOUT, PYRITEG SCATTERED THROUGHOUT,
												T	5 5 5		SHADED AREAS SHOW VOIDS / EMPTY CORE LINER .
							JES1 =1		3		<		5555		
							02 1 20 03 21 20 03 21 20	427	4	CBJ	72				
									- 5						SMEAR SLIDE SUMMARY (%) Section-Interval (cm) Lith. (D=dominant;M=minor) Sand Sand Silt Glay COMPOSITION: Curver
							12 V= 1593			CBI	E2		555		Feldspar Rock Fragments Mica Clay Volcanic Glass Calcite / Dolomite Cement Pore Space Accessory Minerals
							1 = P 0		6			k	5555		Foraminifers 2 Nannofossils 40 Diatoms Radiolarians Sponge Spicules Silicoflagellates
									7 cc	CBI	T				Fish Remains Plant Debris

Lith Outging Signature Signature Signature Lithologic Description 1000000000000000000000000000000000000	LITHOLOGIC DECREPTION Star Sort Lartfold pf Andry Star Sort Lartfold pf Andry			BIOSTR	AT. ZO	NE /	_	100	_	4	25	6	251	B	1	-3.4 mbsi;	mba
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} $	TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAG.	PHYS. PROPS.	CHEMICAL	section		GY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION SEDIMENTS COMPETED OF M NANNOFOSSIC ODZES OF MAR COLOUR AND CARBONATE C	hley YING :0076-1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										сві	72		~~~~			
$ \begin{array}{c cccc} & 3 \\ & 3 \\ & 5 \\ & 5 \\ & 5 \\ & 6 \\ & 7 \\ & $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								1 67.	2				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*71		
4 55 50% 5 5 5 5 5 6 172 7 5 8 6 9 172 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 16 172 172 172 173 174 174 172 175 172 176 172 177 177 178 172 179 172 171 172 172 172 172 172 173 174 174 177 175 178 176 178 177 178 178 178 179 178 179 178 171 178 172 178								0 A. X 1:54 V= 1560	<		СЗІ	T2	I	5			
3070 5 SMEAR SLIDE SUMMARY (%) 5 5 1 5 1 1 6 1 1 7 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $									4				\$\$\$\$			
ZBI	Avik CBI T2 From Fragments Mica Rock Fragments Mica Clay Clay Served Volcanic Glass Calcite / Dolomite Calcite / Dolomite I Calcite / Dolomite I Pore Space Accessory Minerals Accessory Minerals I S S S I S I S I S I							Its at at a way	25 -0		СВІ	12		5		SMEAR SLIDE SUMMARY (%) Section-Interval (cm) 34,041142 59 Lith. (D=dominent,M=minor) 0 0 0 TEXTURE: 5 0 5 Sand 10 5 2 Clay 73 37 55 COMPOSITION: 72 1 72 72	53 D 2 15 83 3
	WY-6 S S S I I IR Ie S S S S Ie S Ie S S S S S Ie S Ie Diatoms Radiolarians Ie S S T S Silicoflagellates If IR								747.		<u>CBI</u>	12		5 5		Potopari Rock Fragments Mica Clay Volcanic Glass Calcite / Dolomite I Cement Pore Space Accessory Minerals ARACA NEEDLES	7R

UTHOLOGIC DESCRIPTION	LIND COOP 391L Statument of the status of the	LITHOLOGIC DESCRIPTION SB 10000001 ST 10000000 ST 100000000 ST 1000000000000000000000000000000000000			FOSSIL	AT. ZO	NE /	_	100	_		625	6	251	3	_2	<u>44 Xmbsl;</u>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 2 1 2 1 3 C31 1 5 2 1 5 4 1 5 2 1 3 C31 1 5 2 1 5 5 6 1	TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAG.	PHYS, PROPS.	CHEMICAL	SECTION	GRAPH	liC DGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
$ \begin{array}{c} $	3 C33 T2 1 S ** 3 C31 T2 1 S ** 3 C31 T2 1 S 4 C31 T2 1 S * ** ** ** * ** ** ** * ** ** ** * ** ** ** * ** ** ** * ** ** ** * ** ** ** * ** ** ** * ** ** ** * ** ** **	$ \begin{array}{ccccc} & & & & & & & & & & & & & & & & & & &$									1	сві	72		~~~~		
3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	3 C31 T2 S 3 C31 T2 S 4 C31 T2 9 C31 T2 10 C31 T2 11 C31 T2 12 S S 13 C31 T2 14 C31 T2 15 S S 16 C32 S 17 S S 18 S S 19 S S 10 S S 11 S S 12 S S 13 S S 14 S S <td< td=""><td>3 C31 T2 3 C31 T2 4 C31 T2 9 C3 T2 9 C3 T2 9 C3 T2 9 C3 T2 1 Section-Interval (cm) Section-Interval (cm) 9 C3 T2 1 Section-Interval (cm) Section-Interval (cm) 1 Sectin-Interval</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>C83</td><td>T2</td><td></td><td>75555555</td><td>** *3</td><td></td></td<>	3 C31 T2 3 C31 T2 4 C31 T2 9 C3 T2 9 C3 T2 9 C3 T2 9 C3 T2 1 Section-Interval (cm) Section-Interval (cm) 9 C3 T2 1 Section-Interval (cm) Section-Interval (cm) 1 Sectin-Interval										C83	T2		75555555	** *3	
## 4 CB1 T2	**** 4 CB1 T2 **** **** **** **** **** ***** **** ***** ****** **** ************************************	# 10 G							1= 1586		3	CBI	T2		5 55		
	6% C31 T2 * 5 5 * 5 5 5 5 5 5 6 5 6 7 5 7 7 7 8 6 7 9 5 7 10 10 10 11 10 10 12 10 10 12 10 10 13 10 10 14 10 10 15 10 10 15 10 10 15 10 10 15 10 10 15 10 10 16 10 10 17 10 10 18 10 10 17 10 10 18 10 10 19 10 10 10 10 10 10 10 10	SMEAR SLIDE SUMMARY (%) Section-Interval (cm) Suffyed sol H Textrure: Sad 2 5 Sitt 0 5 Section-Interval (cm) 2 5 Section-Interval (cm) 2 5 Sitt 0 5 Sitt 0 5 Sitt 0 5 Section-Interval (cm) 2 5 Section-Interval (cm) 5 Section-Interval (c							85 = 0 @ . 0	6%	4	CBI	72				

		FOSSIL	CHAR	ACTER	 1-	00	_			6451	-	-	mosi;
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAG.	PHYS. PROPS.	CHEMICAL	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						0 di 43 ve 1585	iy.				**************	*70	SMEAR SLIDE SUMMARY (%) Section-Interval (cm) Composition Dedominant.M=minor) Distribution Composition Composition Common (cm) Peldspar Rock Fragments Mica Calite / Dolomite Calite / Dolomite

		FOSSIL	CHAR	NE / ACTER	-	100	_	_	625	Ğ	25	B	_	26Xmbel;m
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAG.	PHYS. PROPS.	CHEMICAL	SECTION			DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	
								1	૮૩ા	72	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
									CBI	12	: [} [}	5555		
						12-11 = 1 - 18-1 = 1 = 1 = 1 = 2	507.	3	C31	2	~~~~	*****	*1	
								5						SMEAR SLIDE SUMMARY (%) Section-Interval (cm) Lith, (D=dominant;M=minor) TEXTURE: Sand Silt Clay CoMPOSITION: Quartz Feldspar Rock Fragments Mica Clay Volcanic Glass
								6 7	CB1	TL		~~		Calcite / Dolomite Cement Pore Space Accessory Minerals CALL FRAGENERS Foraminifers Nannofossils Diatoms Radiolarians Sponge Spicules Silicoflagellates Fish Remains Plant Debris

SB SB<			FOSSIL	CHARA	ACTER	-	100	-	-	625	62	SE	\$	2	.7X	mbsi; _	-	 -
Image: State	TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAG.	PHYS. PROPS.	CHEMICAL	SECTION	GRAPH	IIC DGY	DRILLING DISTURE	SED. STRUCTURES	SAMPLES	LITHOLOGIC DE	SCRIPTI	ON	
3 3 3 3 3 3 3 3 4 3 5 3 5 3 5 3									1	6 81	12							
3 3 5 5 6 B7 6 B7 7 5 6 B7 7 5 7 5 8 5 8 5 9 B7 1 55 5 6 1 5 5 6 1 1 5 7 6 1 7 1 8 1 1 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td>૮ઢા</td><td>Ð</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									2	૮ઢા	Ð							
SMEAR SLIDE SUMMARY (%) Section-Interval (cm) Lith. (D=dominant;M=minor) TEXTURE: Sand Clay 9d COMPOSITION: Quartz Feldspar Rock Fragments Mice							1451 = 1 181 = 1 0		4	C31	12		\$\$\$\$	**				
									5					9 7	SMEAR SLIDE SUMMAR Section-Interval (cm) Lith, (D=dominant;M=mind TEXTURE: Sand Silt Clay COMPOSITION: Quartz Feldspar Rock Fragments Mica	Y (%) Wa () IO IO 90 8		
									CC	631	E	5			Fish Remains Plant Debris	R		

		BIOSTR FOSSIL	AT. ZO CHARA	NE /		LEG	<u> </u>	-	51TE 625		_	_	CORE CORED INTERVAL
TIME-ROCK UNIT	PORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	ALEOMAG.	HYS. PROPS.	CHEMICAL	SECTION	GRAPHIC LITHOLOGY	A DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION This core shows a general and gradual tread of ignicesting collareasis components. The downerst lithday is a hermologic rationers
Pleistocene	FOR	NAN	RAD	. DIAT	PALE	SAHd	СНЕМ	2	T2 T2 T2	00000 00000 00000 00000 00000 00000 0000		swes × 20	action the second structure of the constant of the constant theory is a temperature of the constant theory is a temperature and the core is a deriver of the core and more this detected to burners. Birth the core is a deriver of the core of the core is a deriver of the core of the core is a deriver of the core of the core of the core is a deriver of the core of the c
						ΦΦΦ.151 00 1152 0 4 75 154 4 1508 ΦΦΦ.53 00 4 75 0 7 150 4	012% 012% 012%	4 5 6 6	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	CB4 IZB5 CB4 CB4 CB4 CB4 CB4 CB4 CB4 CB4	~ ~~ ** ~ ~~ ** ~ ~ ~ * ~ ~ ~ ** ~ ~ ~ ~ ** ~	* 20	SMEAR SLIDE SUMMARY (%) 3 S Section-Interval (cm) 20 20 Lith. (D-dominant;M=minor) D Ditt. (D-dominant;M=minor) D Sand 15 S Silt 20 20 Clay G Clay G Clay G Clay G Clay G Clay G Outrat 15 IO Feldspar TR. Rock Fragments F Mica TR. TR. Clay 48 75 Volcanic Glass G Calcie C Dolomite G Carent Pore Space Accessory Minerals (Opoc, uzs) 1 Accessory Minerals (Doc (uzs) 1 Accessory Minerals (Doc (uzs) 1 Radiolarians TR. TR. Silicolfageilates TR. Silicolfageilates TR. Fish Remains TR. Plant Debris IS Calcafean Liografic debax IS

100 1

	8	BIOSTR FOSSIL	AT. ZO	NE / ACTER	٦.	LEG	_	_	SITE	но	C	_		CORE CORED INTERVAL 2.Hmbsl; <u>H.99-24.79</u>
CK UNHT	IFERS	SSILS	RIANS			OPS.	-		GRAPHI	c	S DISTURB.	UCTURES		LITHOLOGIC DESCRIPTION
TIME-ROC	FORAMIN	NANNOFO	RADIOLA	DIATOMS	PALEOMA	PHYS. PRO	CHEMICA	SECTION		GY	• DRILLING	SED. STRI	SAMPLES	hemipelagic must grades Mb undrying hypert dive gray (545/2) marly called 0820. Bioturbation is ubiguitus and
											••	5	-	clear troops appear at 60,65,90 an 105-110. Gradational central termine col is at 57cm.
									T 2	684	1	> > <		as above to an inregular autact at 95 cm. Botween 95-99 cm. is a foram inch sand. The color of section 2
											1	55 55 K		aradivally changes tom light olive (574/ at the top to olive gray (546/2). The li (clar (02) is sent more contract present. Color banding is cliffuse but appears to
						8= 1.55 8= 1.55 Va 1562		2	<u> </u>	-	1	\$		atternate down core. Mottling is relso prevalent. Burrows cut across core at 250 257, 267, 337 and 480.
						0	9 36%				1.	۲ ۱	₹*	marks a transition from benipelassic clay, mild abve, to marky nanotossil ease below. The lower onit grades from list of the care (\$76/2) to other so
stocene										-	1	5		(545/2) through section 4. Section 5 has gradiel color change to grayish brown (2.545/2) and then dark gray (1048 4/1). These two colo
Plei				0									*	grade into one another for the remainder. > Some flow-disturbance occurs along one edge of section 2 and useer 35-40 cm, of section 3.
									T2 7	СВ4		1	*	? Pyrite; black spots throughout core.
								4				Q X	~	* Shell fragments occur at 845 cm.
						ST 15/0	004					s	-	SMEAR SLIDE SUMMARY (%) 4 5 5
						0	03%						* 35	Section-Interval (cm) ₩140 ISS 10 Lith. (D=dominant;M=minor) M D TEXTURE:
						9 -514- 5-11-	23%	5					70	COMPOSITION: Quartz S 2 T T Feldspar T Rock Fragments
						28.97								mica 1 T Clay 68 33 45 65 55 Volcanic Glass Calcite / Dolomite T Calcite / Dolomite T T Cement Pres Space 1
				~				6	T2	684		æ		Accessory Minerals Accessory Minerals Aragentie needles I T T Opaques I Exampleifore Division
												٣		Portantiniters 2410 [0] S Nannofossils 12.45 [20 zo Diatoms - Radiolarians - Sponge Spicules -
							59	7						Silicollagellates Fish Remains T Plant Debris T Skeletal Arhos, Calavau 13 10 15 10

đ.

		FOSSIL	AT. ZO	NE /		_	100	_	-	625_	_	C	_	_	3 Hmbsl; <u>24,79-34,72</u> ,
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAG.	PHYS. PROPS.	CHEMICAL	SECTION	GRAP	PHIC LOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION Drilling induced disturbance has disrupted large portions of this core. A scorpy sediment at the top goales drivnubule into thou-in deformation. The internation between Stip-720 cm. and
								082	2	Tz	CB4	0 0 0 0 0 0 000000000000000000000000000			below 830 cm. show whore deformation The core is predominately a here pelagic calcareas mud. Pyrite streaks and spots appear throughout. Biothylochim In the form of borrows and Chardontes the color motiling of the split sections. The top of the split sections. The top of the split sections (STS/1) at 35 m. These colors prevail through thou-in sections, as does an oliv gray (SYS/2) and light olive gray (SYB/ gray (SYS/2) and light olive gray (SYB/ at 5the con the sections hows gredodismal color contacts from barra (Racking organs (SYH/). At SEE-SPORM. (Chardings where course the section. Color
Pleistocene							534		3	T2	CB4				Changes occur on a 5-10 un scale in the basi pertan of Sect. 4 and gradual beame thicker (~20m) in sects. Bet 680 cm. the core is a mixed gray who box (rc YAS /2) and other gray (Sys /2). A (hondrites interval also seen bothern 600-6)
					2		V= 1529 @ \$= 1.50 V= 15	21% 0 22%	4	<u>T2</u> <u>T2</u> T2			5-55 5 5 5	*22*1	SMEAR SLIDE SUMMARY (%) 4 4 7 Section-Interval (cm) 726/H1/23 Lith. (D=dominant:M=minor) D b D TEXTURE: D D
							8* 1.48 Ø= bos		5	T2	- 1684 (84	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Silt 30 10 1s Clay 30 10 1s Clay 30 83 2s COMPOSITION: 10 4 10 Quartz 15 4 10 Feldspar 15 4 10 Mice TR Mice TR Clay 44 4e 65 Volcanic Glass Calcite / Dolomite Calcite / Dolomite 10 Pore Space 10 Accessory Minerals 10
									6			2	5 5 5	* 23	Furte R TR. Aragonite TR TR. Foraminifers TR S Nannofossils S 40 S Diatoms Radiolarians Radiolarians TR Silicoflagellates TR Fish Remains 3 TR Plant Debris 23 10 16

		FOSSIL	CHAR	NE / ACTER	-	100	_	_	625		C		_	4H	nbsl; <u>34.72 - 44.57</u> ml
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAG.	PHYS. PROPS.	CHEMICAL	SECTION	GRAPH LITHOLO	IC GY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESC This are exhibits mud distribute. It cousists gic collecters mud wi tribution in the from of	erate to stylet daths primarily zja kewipe the ovitance of bio- burrowing, and
				~					TZ.	© 684	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-X- K		hotting. (reis hight gray (573 atrit 70 cm. where it ge dire. This in trin grades lit at 70 cm. Dire gay peri- to 300 cm. where is grades (2.57/2). Gray brow he	1/2) boun the top to idively becomes or divergeng (575/2) ints with wathing, to gray who boom comes of the gray boom of the gray
									T2.	K84	5	* > > >	* 32	colus bland into times of 546/1). No discernite trand except for a d band at 908-916 m	gray (575/2 and le waterds are ark gray (574/1
ne						2251 =		2			· · · · · · · · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Hynte, black stre Throughout, as well as (~1 in down.) at 45 found at 770 in an	als are trune a small notice cun. Shell frequen d 810 cm.
Pleistoce						0 0 = 1.8%	0					\ \ \\ \\	×	•	
						1527	31%					5 5 5	Ŧo		
						0 8= 143 v=	6 35%	4	TZ	(84		5-5-5	¥ 82		
											1	5 5		SMEAR SLIDE SUMMARY Section-Interval (cm) Lith. (D=dominant;M=minor, TEXTURE:	(%) 2 3 4 7 32 70 82 24 9 9 9 0 0
								5			 	5		Sand Silt Clay COMPOSITION: Quartz Feldspar Rock Fragments	2 5 5 15 93 80 5 2 5 10
					C.4							1 \$\$\$\$ -1-		Clay Volcanic Glass Calcite / Dolomite Cement Pore Space Accessory Minerals Accessory Minerals	
						1.66 V= 1548		6				55		Foraminifers Nannofossils Diatoms Radiolarians	5 3 1 8 50 30 25 10
						= * P	0 576	7	 T2	C84	1	551	* 14	Spinor Spicules Silicoflagellates Fish Remains Plant Debris Colligrew, skelctal debris Twittinics (?) Aligal custs	15 5 12 20 TR. TR.