Next Section | Table of Contents

REFERENCES

Arthur, M.A., and Dean, W.E., 1986. Cretaceous paleoceanography. In Tucholke, B.E., and Vogt, P.R. (Eds.), Decade of North American Geology, Western North Atlantic Basin Synthesis Volume, Geol. Soc. Am., 617–630.

Arthur, M.A., Dean, W.E., Schlanger, S.O., 1985. Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2. In Sundquist, E.T., and Broecker, W.S. (Eds.), The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Geophys. Monogr., Am. Geophys. Union, 32:504–529.

Arthur, M.A., Dean, W.E., and Stow, D.A.V., 1984. Models for the deposition of Mesozoic-Cenozoic fine-grained, organic-carbon–rich sediment in the deep-sea. In Stow, D.A.V., and Piper, D.J.W (Eds.), Fine-Grained Sediments: Deep-Water Processes and Facies. Spec. Publ.—Geol. Soc. London, 15:527–560.

Arthur, M.A., Jenkyns, H.C., Brumsack, H., and Schlanger, S.O., 1990. Stratigraphy, geochemistry, and paleo-oceanography of organic carbon-rich Cretaceous sequences. In Ginsburg, R.N., and Beaudoin, B. (Eds.), Cretaceous Resources, Events and Rhythms. NATO ASI Ser., 304:75–119.

Arthur, M.A., Kump, L., Dean, W., and Larson, R., 1991. Superplume? Supergreenhouse? Eos, 2:301.

Arthur, M.A., and Premoli-Silva, I., 1982. Development of widespread organic carbon-rich strata in the Mediterranean Tethys. In Schlanger, S.O., and Cita, M.B. (Eds.), Nature and Origin of Cretaceous Carbon-Rich Facies: London (Academic Press), 7–54.

Aubry, M.-P., Berggren, W.A., Stott, L., and Sinha, A., 1996. The upper Paleocene–lower Eocene stratigraphic record and the Paleocene/Eocene boundary carbon isotope excursion: implications for geochronology. In Knox, R.W.O'B., Corfield, R.M., and Dunay, R.E. (Eds.), Correlation of the Early Paleogene in Northwestern Europe. Spec. Publ.—Geol. Soc. Am., 101:353–380.

Aubry, M.-P., Lucas, S., and Berggren, W.A. (Eds.), 1998. Late Paleocene and Early Eocene Climatic and Biotic Evolution: New York (Columbia Univ. Press).

Bains, S., Corfield, R.M., and Norris, R.D., 1999. Mechanisms of climate warming at the end of the Paleocene. Science, 285:724–727.

Baker, P.A., Gieskes, J.M., and Elderfield, H., 1982. Diagenesis of carbonates in deep-sea sediments: evidence from Sr2+/Ca2+ ratios and interstitial dissolved Sr2+ data. J. Sediment. Petrol., 52:71–82.

Barrera, E., 1994. Global environmental changes preceding the Cretaceous-Tertiary boundary: early-late Maastrichtian transition. Geology, 22:877–880.

Barrera, E., and Huber, B.T., 1990. Evolution of Antarctic waters during the Maestrichtian: foraminifer oxygen and carbon isotope ratios, Leg 113. In Barker, P.F., Kennett, J.P., et al., Proc. ODP, Sci. Results, 113: College Station, TX (Ocean Drilling Program), 813–827.

Barrera, E., and Savin, S.M., 1999. Evolution of Campanian–Maastrichtian marine climates and oceans. In Barrera, E., and Johnson, C.C. (Eds.), Evolution of the Cretaceous Ocean-Climate System, Spec. Pap.—Geol. Soc. Am., 332:245–282.

Barrera, E., Savin, S.M., Thomas, E., and Jones, C.E., 1997. Evidence for thermohaline-circulation reversals controlled by sea level change in the latest Cretaceous. Geology, 25:715–718.

Barron, J.A., Basov, I.A., Beaufort, L., Dubuisson, G., Gladenkov, A.Y., Morley, J.J., Okada, M., Ólafsson, D.K., Pak, D.K., Roberts, A.P., Shilov, V.V., and Weeks, R.J., 1995. Biostratigraphic and magnetostratigraphic summary. In Rea, D.K., Basov, I.A., Scholl, D.W., and Allan, J.F. (Eds.), Proc. ODP, Sci. Results, 145: College Station, TX (Ocean Drilling Program), 559–575.

Barron, E.J., and Peterson, W.H., 1991. The Cenozoic ocean circulation based on ocean General Circulation Model results. Palaeogeogr., Palaeoclimatol., Palaeoecol., 83:1–28.

Baudin, F., Deconinck, J.-F., Sachsenhofer, R.F., Strasser, A., and Arnaud, H., 1995. Organic geochemistry and clay mineralogy of Lower Cretaceous sediments from Allison and Resolution guyots (Sites 865 and 866), Mid-Pacific Mountains. In Winterer, E.L., Sager, W.W., Firth, J.V., and Sinton, J.M. (Eds.), Proc. ODP, Sci. Results, 143: College Station, TX (Ocean Drilling Program), 173–196.

Berger, W.H., Kroenke, L.W., Mayer, L.A., and Shipboard Scientific Party, 1991. Ontong Java Plateau, Leg 130: synopsis of major drilling results. In Kroenke, L.W., Berger, W.H., Janecek, T.R., et al., Proc. ODP, Init. Repts., 130: College Station, TX (Ocean Drilling Program), 497–537.

Berggren, W.A., Kent, D.V., Swisher, C.C., III, and Aubry, M.-P., 1995. A revised Cenozoic geochronology and chronostratigraphy. In Berggren, W.A., Kent, D.V., Aubry, M.-P., and Hardenbol, J. (Eds.), Geochronology, Time Scales and Global Stratigraphic Correlation. Spec. Publ.–Soc. Econ. Paleontol. Mineral. (Soc. Sediment. Geol.), 54:129–212.

Boon, J.J., and de Leeuw, J.W., 1979. The analysis of wax esters, very long mid-chain ketones and sterol ethers isolated from Walvis Bay diatomaceous ooze. Mar. Chem., 7:117–132.

Bralower, T.J., Arthur, M.A., Leckie, R.M., Sliter, W.V., Allard, D.J., and Schlanger, S.O., 1994. Timing and paleoceanography of oceanic dysoxia/anoxia in the Late Barremian to Early Aptian. Palaios, 9:335–369.

Bralower, T.J., CoBabe, E., Clement, B., Sliter, W.V., Osburne, C., and Longoria, J., 1999. The record of global change in mid-Cretaceous (Barremian–Albian) sections from the Sierra Madre, northeastern Mexico. In Huber, B.T., Bralower, T.J., and Leckie, R.M. (Eds.), J. Foraminiferal Res., 29:418–437.

Bralower, T.J., Fullagar, P.D., Paull, C.K., Dwyer, G.S., and Leckie, R.M., 1997a. Mid-Cretaceous strontium-isotope stratigraphy of deep-sea sections. Geol. Soc. Am. Bull., 109:1421–1442.

Bralower, T.J., Monechi, S., and Thierstein, H.R., 1989. Calcareous nannofossil zonation of the Jurassic-Cretaceous boundary interval and correlation with the geomagnetic polarity timescale. Mar. Micropaleontol., 14:153–235.

Bralower, T.J., Sliter, W.V., Arthur, M.A., Leckie, R.M., Allard, D.J., and Schlanger, S.O., 1993. Dysoxic/anoxic episodes in the Aptian-Albian (Early Cretaceous). In Pringle, M.S., Sager, W.W., Sliter, M.V., and Stein, S. (Eds.), The Mesozoic Pacific: Geology, Tectonics, and Volcanism. Geophys. Monogr., Am. Geophys. Union, 77:5–37.

Bralower, T.J., Thomas, D.J., Zachos, J.C., Hirschmann, M.M., Röhl, U., Sigurdsson, H., Thomas, E., and Whitney, D.L., 1997b. High-resolution records of the late Paleocene thermal maximum and circum-Caribbean volcanism: is there a causal link? Geology, 25:963–966.

Bralower, T.J., Zachos, J.C., Thomas, E., Parrow, M., Paull, C.K., Kelly, D.C., Premoli Silva, I., Sliter, W.V., and Lohmann, K.C., 1995. Late Paleocene to Eocene paleoceanography of the equatorial Pacific Ocean: stable isotopes recorded at Ocean Drilling Program Site 865, Allison Guyot. Paleoceanography, 10:841–865.

Brass, G.W., Southam, J.R., and Peterson, W.H., 1982. Warm saline bottom water in the ancient ocean. Nature, 296:620–623.

Brassell, S.C., Comet, P.A., Eglinton, G., Isaacson, P.J., McEvoy, J., Maxwell, J.R., Thomson, I.D., Tibbetts, P.J., and Volkman, J.K., 1980. The origin and fate of lipids in the Japan Trench. In Douglas, A.G., and Maxwell, J.R. (Eds.), Advances in Organic Geochemistry 1979: Oxford (Pergamon Press), 375–392.

Brassell, S.C., Eglinton, G., Marlowe, I.T., Pflaumann, U., and Sarnthein, M., 1986. Molecular stratigraphy: a new tool for climatic assessment. Nature, 320:129–133.

Bréhéret, J.G., 1988. Episodes de sédimentation riches en matière organique dans les marnes bleues d'âge Aptien et Albien de la partie pélagique du bassin vocontien. Bull. Geol. Soc. Fr., 8:349–356.

Browning, J.V., Miller, K.G., and Pak, D.K., 1996. Global implications of lower to middle Eocene sequence boundaries on the New Jersey Coastal Plain—the Icehouse cometh. Geology, 24:639–642.

Busson, G., and Noël, D., 1972. Les coccolithophoridées fossiles ne peuvent plus être considérées comme caractéristiques du seul environnement pélagique. Bull. Soc. Geol. Fr., 164:493–502.

Busson, G., and Noël, D., 1991. Les Nannoconides, indicateurs environnementaux des oceans et mers epicontinentales du Jurassique terminal et du Cretace inferieur. Oceanol. Acta, 14:333–356.

Caldeira, K., and Rampino, M.R., 1990. Carbon dioxide emissions from Deccan volcanism and the K/T boundary greenhouse effect. Geophys. Res. Lett., 17:1299–1302.

Cande, S.C., and Kent, D.V., 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res., 100:6093–6095.

Chauris, H., LeRousseau, J., Beaudoin, B., Propson, S., and Montanari, A., 1998. Inoceramid extinction in the Gubbio Basin (northeastern Apennines of Italy) and relations with mid-Maastrichtian environmental changes. Palaeogeogr., Palaeoclimatol., Palaeoecol. 139:177–193.

Chepstow-Lusty, A., Backman, J., and Shackleton, N.J., 1989. Comparison of upper Pliocene Discoaster abundance variations from North Atlantic Sites 552, 607, 658, 659 and 662: further evidence for marine plankton responding to orbital forcing. In Ruddiman, W.F., Sarnthein, M., et al., Proc. ODP, Sci. Results, 108: College Station, TX (Ocean Drilling Program), 121–141.

Clarke, L.J., and H.C. Jenkyns, 1999. New oxygen isotope evidence for long-term Cretaceous climatic change in the Southern Hemisphere. Geology, 27:699–702.

Coccioni, A., Nesci, O., Tramontana, M., Wezel, F.C., and Moretti, E., 1987. Descrizione di un livello-guida "radiolaritico-bituminoso-ittiolitico" alla base delle marne a fucoidi nell'Apennino umbro-marchigiano. Boll. Soc. Geol. Ital., 106:183–192.

Coccioni, R., Erba, E., and Premoli Silva, I., 1992. Barremian-Aptian calcareous plankton biostratigraphy from the Gorgo Cerbara section (Marche, central Italy) and implications for plankton evolution. Cretaceous Res., 13:517–537.

Coccioni, R., and Premoli Silva, I., 1994. Planktonic foraminifera from the Lower Cretaceous of Rio Argos sections (southern Spain) and biostratigraphic implications. Cretaceous Res., 15:645-687.

Coffin, M.F., and Eldholm, O., 1994. Large igneous provinces: crustal structure, dimensions, and external consequences. Rev. Geophys., 32:1–36.

Corfield, R.M., Cartlidge, J.E., Premoli Silva, I., and Housley, R.A., 1991. Oxygen and carbon isotope stratigraphy of the Palaeogene and Cretaceous limestones in the Bottaccione Gorge and the Contessa Highway sections, Umbria, Italy. Terra Nova, 3:414–422.

Dean, W.E., Claypool, G.E., and Thiede, J., 1981. Origin of organic-carbon–rich Mid-Cretaceous limestones, Mid-Pacific Mountains and southern Hess Rise. In Thiede, J., Vallier, T.L., et al., Init. Repts. DSDP, 62: Washington (U.S. Govt. Printing Office), 877–890.

Dean, W.E., and Gardner, J.W., 1982. Origin and geochemistry of redox cycles of Jurassic to Eocene age, Cape Verde Basin (DSDP Site 367), Continental Margin of North-West Africa. In Schlanger, S.O., and Cita, M.B. (Eds.), Nature and Origin of Cretaceous Carbon-Rich Facies: London (Academic Press), 55–78.

D'Hondt, S., and Arthur, M.A., 1996. Late Cretaceous oceans and the cool tropic paradox. Science, 271:1838–1841.

Dickens, G.R., 2000. Methane oxidation during the Late Palaeocene Thermal Maximum. Bull. Soc. Geol. Fr., 171:37–49.

Dickens, G.R., Castillo, M.M., and Walker, J.G.C., 1997. A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology, 25:259–262.

Dickens, G.R., O'Neil, J.R., Rea, D.K., and Owen, R.M., 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 10:965–971.

Douglas, R.G., 1971. Cretaceous foraminifera from the northwestern Pacific Ocean: Leg 6, Deep Sea Drilling Project. In Fischer, A.G., Heezen, B.C., et al., Init. Repts. DSDP, 6: Washington (U.S. Govt. Printing Office), 1027–1053.

Douglas, R.G., and Savin, S.M., 1971. Isotopic analyses of planktonic foraminifers from the Cenozoic of the northwest Pacific, Leg 6. In Fischer, A.G., Heezen, B.C., et al., Init. Repts. DSDP, 6: Washington (U.S. Govt. Printing Office), 1123–1127.

Douglas, R.G., and Savin, S.M., 1975. Oxygen and carbon isotope analyses of Tertiary and Cretaceous microfossils from Shatsky Rise and other sites in the North Pacific Ocean. In Larson, R.L., Moberly, R., et al., Init. Repts. DSDP, 32: Washington (U.S. Govt. Printing Office), 509–520.

Duncan, R.A., and Richards, M.A., 1991. Hotspots, mantle plumes, flood basalts, and true polar wander. Rev. Geophys., 29:31–50.

Erba, E., 1994. Nannofossils and superplumes: the early Aptian "nannoconids crisis." Paleoceanography, 9:483–501.

Erba, E., Channell, J.E.T., Claps, M., Jones, C., Larson, R., Opdyke, B., Premoli- Silva, I., Riva, A., Salvini, G., and Torricelli, S., 1999. Integrated stratigraphy of the Cismon APTICORE (southern Alps, Italy): a "reference section" for the Barremian–Aptian interval at low latitudes. J. Foraminiferal Res., 29:371–391.

Erba, E., and Larson, R.L., 1991. Nannofossils and superplumes. Eos, Transactions, Am. Geophys. Union, 72:301. (Abstract).

Erbacher, J., Huber, B.T., Norris, R.D., and Markey, M., 2001. Intensified thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period. Nature, 409:325–327.

Erbacher, J., and Thurow, J., 1997. Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and western Tethys. Mar. Micropalaeontol., 30:139–158.

Erbacher, J., Thurow, J., and Littke, R., 1996. Evolution patterns of radiolaria and organic matter variations: a new approach to identify sea-level changes in mid-Cretaceous pelagic environments. Geology, 24:499–502.

Ewing, M., Saito, T., Ewing, J.I., and Burckle, L.M., 1966. Lower Cretaceous sediments from the Northwestern Pacific. Science, 152:751–755.

Farrell, J.W., and Prell, W.L., 1991. Pacific CaCO3 preservation and 18O since 4 Ma: paleoceanic and paleoclimatic implications. Paleoceanography, 6:485–498.

Farrimond, P., Eglinton, G., and Brassell, S.C., 1986. Alkenones in Cretaceous black shales, Blake-Bahama Basin, western North Atlantic. In Leythaeuser, D., and Rullkötter, J. (Eds.), Advances in Organic Geochemistry, 1985. Org. Geochem., 10:897–903.

Fassell, M.L., and Bralower, T.J., 1999. Warm, equable mid-Cretaceous: stable isotope evidence. In Barrera, E., and Johnson, C.C. (Eds.), The Evolution of the Cretaceous Ocean Climate System, Spec. Pap.—Geol. Soc. Am., 332:121–142.

Fischer, A.G., Heezen, B.C., et al., 1971. Init. Repts. DSDP, 6: Washington (U.S. Govt. Printing Office).

Frank, T.D., and Arthur, M.A., 1999. Tectonic forcings of Maastrichtian ocean-climate evolution. Paleoceanography, 14:103–117.

Gerstel, J., Thunell, R.C., Zachos, J.C., and Arthur, M.A., 1986. The Cretaceous/Tertiary boundary event in the North Pacific: planktonic foraminiferal results from Deep Sea Drilling Project Site 577, Shatsky Rise. Paleoceanography, 1:97–117.

Gibson, T.G., Bybell, L.M., and Owens, J.P., 1993. Latest Paleocene lithologic and biotic events in neritic deposits of southwestern New Jersey. Paleoceanography, 8:495–514.

Gradstein, F.M., Agterberg, F.P., Ogg, J.G., Hardenbol, J., van Veen, P., Thierry, J., and Huang, Z., 1994. A Mesozoic time scale. J. Geophys. Res., 99:24051–24074.

Gröcke, D.R., Hesselbo, S.P., and Jenkyns, H.C., 1999. Carbon-isotope composition of Lower Cretaceous fossil wood: ocean-atmosphere chemistry and relation to sea-level change. Geology, 27: 155–158.

Haq, B.U., Hardenbol, J., and Vail, P.R., 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. In Wilgus, C.K., Hastings, B.S., Kendall, C.G.St.C., Posamentier, H.W., Ross, C.A., and Van Wagoner, J.C. (Eds.), Sea-Level Changes—An Integrated Approach. Spec. Publ.—Soc. Econ. Paleontol. Mineral., 42:72–108.

Harland, W.B., Armstrong, R.L., Cox, A.V., Craig, L.E., Smith, A.G., and Smith, D.G., 1990. A Geologic Time Scale 1989: Cambridge (Cambridge Univ. Press).

Haug, G.H., Maslin, M.A., Sarnthein, M., Stax, R., and Tiedemann, R., 1995. Evolution of northwest Pacific sedimentation patterns since 6 Ma (Site 882). In Rea, D.K., Basov, I.A., Scholl, D.W., and Allan, J.F. (Eds.), Proc. ODP, Sci. Results, 145: College Station, TX (Ocean Drilling Program), 293–314.

Hays, J.D., and Pitman, W.C., III, 1973. Lithospheric plate motion, sea level changes, and climatic and ecological consequences. Nature, 246:18–22.

Heath, G.R., Burkle, L.H., et al., 1985. Init Repts., DSDP, 86: Washington (U.S. Govt. Printing Office).

Hilde, T.W.C., Isezaki, N., and Wageman, J.M., 1976. Mesozoic sea-floor spreading in the North Pacific. In Woolard, G.P., Sutton, G.H., Manghnani, M.H., and Moberly, R. (Eds.), The Geophysics of the Pacific Ocean Basin and its Margins. Geophys. Monogr., Am. Geophys. Union, 19:205–226.

Huber, B.T., Hodell, D.A., and Hamilton, C.P., 1995. Mid- to Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geol. Soc. Am. Bull., 107:1164–1191.

Huber, M., and Sloan, L.C., 2000. Climatic response to tropical sea surface temperature changes on a "greenhouse" Earth. Paleoceanography, 15:443–450.

Jahren, A.H., and Arens, N.C., 1998. Methane hydrate dissociation implicated in Aptian OAE events. Abstracts with Programs. Geol. Soc. Am., 30:52. (Abstract).

Jahren, A.H., Arens, N.C., Sarmiento, G., Guerrero, J., and Amundson, R., 2001. Terrestrial record of methane hydrate dissociation in the Early Cretaceous. Geology, 29:159–162.

Jenkyns, H.C., 1980. Cretaceous anoxic events: from continents to oceans. J. Geol. Soc. London, 137:171–188.

Jenkyns, H.C., 1995. Carbon-isotope stratigraphy and paleoceanographic significance of the Lower Cretaceous shallow-water carbonates of Resolution Guyot, Mid-Pacific Mountains. In Winterer, E.L., Sager, W.W., Firth, J.V., and Sinton, J.M. (Eds.), Proc. ODP, Sci. Results, 143: College Station, TX (Ocean Drilling Program), 99–104.

Jenkyns, H.C., Gale, A.S., and Corfield, R.M., 1994. Carbon- and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geol. Mag., 131:1–34.

Jenkyns, H.C., Paull, C.K., Cummins, D.I., and Fullagar, P.D., 1995. Strontium-isotope stratigraphy of Lower Cretaceous atoll carbonates in the Mid-Pacific Mountains. In Winterer, E.L., Sager, W.W., Firth, J.V., and Sinton, J.M. (Eds.), Proc. ODP, Sci. Results, 143: College Station, TX (Ocean Drilling Program), 89–97.

Johnson, C.C., Barron, E.J., Kauffman, E.G., Arthur, M.A., Fawcett, P.J., and Yasuda, M.K., 1996. Middle Cretaceous reef collapse linked to ocean heat transport. Geology, 24:376–380.

Keller, G., and Barron, J.A., 1987. Paleodepth distribution of Neogene deep-sea hiatuses. Paleoceanography, 2:697–713.

Kelly, D.C., Bralower, T.J., Zachos, J.C., Premoli Silva, I., and Thomas, E., 1996. Rapid diversification of planktonic foraminifera in the tropical Pacific (ODP Site 865) during the late Paleocene thermal maximum. Geology, 24:423–426.

Kennett, J.P., 1977. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography. J. Geophys. Res., 82:3843–3860.

Kennett, J.P., Keller, G., and Srinivasan, M.S., 1985. Miocene planktonic foraminiferal biogeography and paleoceanographic development of the Indo-Pacific region. In Kennett, J.P. (Ed.), The Miocene Ocean: Paleoceanography and Biogeography. Mem.—Geol. Soc. Am., 163:197–236.

Kennett, J.P., and Shackleton, N.J., 1976. Oxygen isotopic evidence for the development of the psychrosphere 38 Myr ago. Nature, 260:513–515.

Kennett, J.P., and Stott, L.D., 1991. Abrupt deep-sea warming, paleoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature, 353:225–229.

Koizumi, I., 1975. Neogene diatoms from the northwestern Pacific Ocean, Deep Sea Drilling Project. In Larson, R.L., Moberly, R., et al., Init. Repts. DSDP, 32: Washington (U.S. Govt. Printing Office), 865–889.

Koizumi, I., 1985. Late Neogene paleoceanography in the western north Pacific. In Heath, G.R., Burckle, L.H., et al., Init. Repts. DSDP, 86: Washington (U.S. Govt. Printing Office), 429–438.

Koizumi, I., and Tanimura, Y., 1985. Neogene diatom biostratigraphy of the middle latitude western North Pacific, Deep Sea Drilling Project Leg 86. In Heath, G.R., Burckle, L.H., et al., Init. Repts. DSDP, 86: Washington (U.S. Govt. Printing Office), 269–300.

Larson, R.L., 1991a. Geological consequences of superplumes. Geology, 19:963–966.

Larson, R.L., 1991b. The latest pulse of Earth: evidence for a mid-Cretaceous superplume. Geology, 19:547–550.

Larson, R.L., and Chase, C.G., 1972. Late Mesozoic evolution of the western Pacific Ocean. Geol. Soc. Am. Bull., 83:3627–3643.

Larson, R.L., and Erba, E., 1999. Onset of the Mid-Cretaceous greenhouse in the Barremian–Aptian: igneous events and the biological, sedimentary and geochemical responses. Paleoceanography, 14:663–678.

Larson, R.L., Moberly, R., et al., 1975. Init. Repts. DSDP, 32: Washington (U.S. Govt. Printing Office).

Larson, R.L., Schlanger, S.O., et al., 1981. Init. Repts. DSDP, 61: Washington (U.S. Govt. Printing Office).

Larson, R.L., Steiner, M.B., Erba, E., and Lancelot, Y., 1992. Paleolatitudes and tectonic reconstructions of the oldest portion of the Pacific plate: a comparative study. In Larson, R.L., Lancelot, Y., et al., Proc. ODP, Sci. Results, 129: College Station, TX (Ocean Drilling Program), 615–631.

Laskar, J., 1990. The chaotic motion of the solar system: a numerical estimate of the size of the chaotic zones. Icarus, 88:266–291.

Leckie, R.M., 1989. A paleoceanographic model for the early evolutionary history of planktonic foraminifera. Palaeogeogr., Palaeoclimatol., Palaeoecol., 73:107–138.

Leckie, R.M., Bralower, T.J., and Cashman, R., in press. Oceanic Anoxic Events and Plankton Evolution: Exploring Biocomplexity in the Mid-Cretaceous, Paleoceanography.

Lini, A., Weissert, H., and Erba, E., 1992. The Valanginian carbon isotope event: a first episode of greenhouse climate conditions during the Cretaceous. Terra Nova, 4:374–384.

Loutit, T.S., Hardenbol, J., Vail, P.R. and Baum, G.R., 1988. Condensed sections: the key to age determination and correlation of continental margin sequences. In Wilgus, C.K., Hastings, B.S., Ross, C.A., Posamentier, H.W., Van Wagoner, J., and Kendall, C.G.St.C. (Eds.), Sea-Level Changes: An Integrated Approach. Spec. Publ.—Soc. Econ. Paleontol. Mineral., 42:183–213.

Luterbacher, H.P., 1975. Early Cretaceous foraminifera from the northwestern Pacific, Leg 32, Deep Sea Drilling Project. In Larson, R.L., Moberly, R., et al., Init. Repts. DSDP, 32: Washington (U.S. Govt. Printing Office), 703–718.

Luterbacher, H.P., and Premoli Silva, I., 1964. Biostratigrafia del limite Cretaceo-terziario nell' Appennino centrale. Riv. Ital. Paleontol., 70:67–117.

MacLeod, K.G., 1994. Bioturbation, inoceramid extinction, and mid-Maastrichtian ecological change. Geology, 22:139–142.

MacLeod, K.G., and Huber, B.T., 1996. Reorganization of deep ocean circulation accompanying a Late Cretaceous extinction event. Nature, 380:422–425.

MacLeod, K.G., Huber, B.T., and Ward, P.D., 1996. The biostratigraphy and paleobiogeography of Maastrichtian inoceramids. In Ryder, G., Fastowsky, D., and Gartner, S. (Eds.), The Cretaceous–Tertiary Event and Other Catastrophes in Earth History. Spec. Publ.–Geol. Soc. Am., 307: 361–373.

Magniez-Jannin, F., 1998. L'élongation des loges chez les foraminifères panctoniques du Crétacé inférieur: une adaptation à la sous-oxygénation des eaux?. Comptes Rendues de l'Académie des Sciences (Serie II): Sciences de la Terre et des Planetes: Montrouge (Gauthier-Villars), 207–213.

Maslin, M.A., Haug, G.H., Sarnthein, M., Tiedemann, R., Erlenkeuser, H., and Stax, R., 1995. Northwest Pacific Site 882: the initiation of Northern Hemisphere glaciation. In Rea, D.K., Basov, I.A., Scholl, D.W., and Allan, J.F. (Eds.), Proc. ODP, Sci. Results, 145: College Station, TX (Ocean Drilling Program), 315–329.

Matter, A., Douglas, R.G., and Perch-Nielsen, K., 1975. Fossil preservation, geochemistry and diagenesis of pelagic carbonates from the Shatsky Rise, northwest Pacific. In Larson, R.L., Moberly, R., et al., Init. Repts. DSDP, 32: Washington (U.S. Govt. Printing Office), 891–921.

McNutt, M.K., and Fischer, K.M., 1987. The South Pacific superswell. In Keating, B.H., Fryer, P., Batiza, R., and Boehlert, G.W. (Eds.), Seamounts, Islands, and Atolls. Geophys. Monogr., Am. Geophys. Union, 43:25–34.

Mélières, F., Deroo, G., and Herbin, J.-P., 1981. Organic-matter-rich and hypersiliceous Aptian sediments from western Mid-Pacific Mountains, Deep Sea Drilling Project Leg 62. In Thiede, J., Vallier, T.L., et al., Init. Repts. DSDP, 62: Washington (U.S. Govt. Printing Office), 903–915.

Menegatti, A.P., Weissert, H., Brown, R.S., Tyson, R.V., Farrimond, P., Strasser, A., and Caron, M., 1998. High resolution 13C stratigraphy through the early Aptian "Livello Selli" of the Alpine Tethys. Paleoceanography, 13:530–545.

Miller, K.G., and Fairbanks, R.G., 1985. Oligocene to Miocene carbon isotope cycles and abyssal circulation changes. In Sundquist, E.J., and Broecker, W.S. (Eds.), The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Geophys. Monogr., Am. Geophys. Union, 32:469–486.

Miller, K.G., Fairbanks, R.G., and Thomas, E., 1987a. Benthic foraminiferal carbon isotopic records and the development of abyssal circulation in the eastern North Atlantic. In Ruddiman, W.F., Kidd, R.B., and Thomas, E., et al., Init. Repts. DSDP, 94: Washington (U.S. Govt. Printing Office), 981–996.

Miller, K.G., Janecek, T.R., Katz, M.E., and Keil, D.J., 1987b. Abyssal circulation and benthic foraminiferal changes near the Paleocene/Eocene boundary. Paleoceanography, 2:741–761.

Miller, K.G., and Thomas, E., 1985. Late Eocene to Oligocene benthic foraminiferal isotopic record, Site 574, equatorial Pacific. In Mayer, L., Theyer, F., Thomas, E., et al., Init. Repts. DSDP, 85: Washington (U.S. Govt. Printing Office), 771–777.

Miller, K.G., Wright, J.D., and Fairbanks, R.G., 1991. Unlocking the Ice House: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res., 96:6829–6848.

Monechi, S., 1985. Campanian to Pleistocene calcareous nannofossil stratigraphy from the northwest Pacific Ocean, Deep Sea Drilling Project Leg 86. In Heath, G.R., Burckle, L.H., et al., Init. Repts. DSDP, 86: Washington (U.S. Govt. Printing Office), 301–336.

Monechi, S., Angori, E., and von Salis, K., 2000. Calcareous nannofossil turnover around the Paleocene/Eocene transition at Alamedilla (southern Spain). Bull. Soc. Geol. Fr., 171:477–489.

Nakanishi, M., Sager, W.W., and Klaus, A., 1999. Magnetic lineations within Shatsky Rise, northwest Pacific Ocean: implications for hot spot–triple junction interaction and oceanic plateau formation. J. Geophys. Res., 104:7539–7556.

Nakanishi, M., Tamaki, K., and Kobayashi, K., 1989. Mesozoic magnetic anomaly lineations and seafloor spreading history of the Northwestern Pacific. J. Geophys. Res., 94:15437–15462.

Nakanishi, M., Tamaki, K., and Kobayashi, K., 1992. Magnetic anomaly lineations from Late Jurassic to Early Cretaceous in the west-central Pacific Ocean. Geophys. J. Int., 109:701–719.

Norris, R.D., and Röhl, U., 1999. Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition. Nature, 401:775–778.

Norris, R.D., and Wilson, P.A., 1998. Low-latitude sea-surface temperatures for the mid-Cretaceous and the evolution of planktic foraminifera. Geology, 26:823–826.

Opdyke, B.N., Erba, E., and Larson, R.L., 1999. Hot LIPs, methane, and the carbon record of the Apticore. Eos, Transactions, Am. Geophys. Union. 80:486–487.

Ourisson, G., Albrecht, P., and Rohmer, M., 1979. The hopanoids: paleochemistry and biochemistry of a group of natural products. Pure Appl. Chem., 51:709–729.

Ourisson, G., Rohmer, M., and Poralla, K., 1987. Microbial lipids betrayed by their fossils. Microbiol. Sci., 4:52–57.

Ozima, M., Kaneoka, I., and Aramaki, S., 1970. K-Ar ages of submarine basalts dredged from seamounts in the western Pacific area and discussion of oceanic crust. Earth Planet. Sci. Lett., 8:237–249.

Pak, D.K., and Miller, K.G., 1992. Paleocene to Eocene benthic foraminiferal isotopes and assemblages: implications for deepwater circulation. Paleoceanography, 7:405–422.

Parrish, J.T., and Curtis, R.L., 1982. Atmospheric circulation, upwelling, and organic-rich rocks in the Mesozoic and Cenozoic eras. Palaeogeogr., Palaeoclimatol., Palaeoecol., 40:31–66.

Pearson, P.N., Ditchfield, P.W., Singano, J., Harcourt-Brown, K.G., Nicholas, C.J., Olsson, R.K., Shackleton, N.J., and Hall, M.A., 2001. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature, 413:481–487.

Pedersen, T.F., and Calvert, S.E., 1991. Anoxia vs. productivity: what controls the formation of organic-carbon–rich sediments and sedimentary rocks? AAPG Bull., 74:454–466.

Perch-Nielsen, K., 1985. Cenozoic calcareous nannofossils. In Bolli, H.M., Saunders, J.B., and Perch-Nielsen, K. (Eds.), Plankton Stratigraphy: Cambridge (Cambridge Univ. Press), 427–554.

Percival, S.F., Jr., and Fischer, A.G., 1977. Changes in calcareous nannoplankton in the Cretaceous–Tertiary biotic crisis at Zumaya, Spain. Evol. Theory, 2:1–35.

Plank, T., Ludden, J.N., Escutia, C., et al., 2000. Proc. ODP, Init. Repts., 185 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA.

Pospichal, J.J., 1991. Calcareous nannofossils across Cretaceous/Tertiary boundary at Site 752, eastern Indian Ocean. In Weissel, J., Peirce, J., Taylor, E., Alt, J., et al., Proc. ODP, Sci. Results, 121: College Station, TX (Ocean Drilling Program), 395–414.

Premoli Silva, I., Castradori, D., and Spezzaferri, S., 1993. Calcareous nannofossil and planktonic foraminifer biostratigraphy of Hole 810C (Shatsky Rise, northwestern Pacific). In Natland, J.H., Storms, M.A., et al., Proc. ODP, Sci. Results, 132: College Station, TX (Ocean Drilling Program), 15–36.

Premoli Silva, I., Erba, E., Salvini, G., Locatelli, C., and Verga, D., 1999. Biotic changes in Cretaceous oceanic anoxic events of the Tethys. J. Foraminiferal Res., 29:352–370.

Premoli Silva, I., and Sliter, W.V., 1999. Cretaceous paleoceanography: evidence from planktonic foraminiferal evolution. In Barrera, E., and Johnson, C.C. (Eds.), The Evolution of Cretaceous Ocean-Climatic System. Spec. Pap.–Geol. Soc. Am., 332:301–328.

Rea, D.K., Basov, I.A., Krissek, L.A., and the Leg 145 Scientific Party, 1995. Scientific results of drilling the North Pacific transect. In Rea, D.K., Basov, I.A., Scholl, D.W., and Allan, J.F. (Eds.), Proc. ODP, Sci. Results, 145: College Station, TX (Ocean Drilling Program), 577–596.

Robert, C., and Kennett, J.P., 1994. Antarctic subtropical humid episode at the Paleocene-Eocene boundary: clay mineral evidence. Geology, 22:211–214.

Rohmer, M., Bisseret, P., and Neunlist, S., 1992. The hopanoids, prokaryotic triterpenoids and precursors of ubiquitous molecular fossils. In Moldowan, J.M., Albrecht, P., and Philp, R.P., Biological Markers in Sediments and Petroleum: Englewood Cliffs, NJ (Prentice Hall), 1–17.

Rohmer, M., Boivier-Nave, P., and Ourisson, G., 1989. Distribution of hopanoid triterpenes in prokaryotes. J. Genetic Microbiol., 130:1137–1150.

Romine, K., and Lombari, G., 1985. Evolution of Pacific circulation in the Miocene: radiolarian evidence from DSDP Site 289. In Kennett, J.P. (Ed.), The Miocene Ocean: Paleoceanography and Biogeography. Mem.—Geol. Soc. Am., 163:273–290.

Roth, P.H., 1973. Calcareous nannofossils—Leg 17, Deep Sea Drilling Project. In Winterer, E.L., Ewing, J.I., et al., Init. Repts. DSDP, 17: Washington (U.S. Govt. Printing Office), 695–795.

Roth, P.H., 1987. Mesozoic calcareous nannofossil evolution: relation to paleoceanographic events. Paleoceanography, 2:601–612.

Roth, P.H., and Bowdler, J., 1981. Middle Cretaceous calcareous nannoplankton biogeography and oceanography of the Atlantic Ocean. In Warme, J.E., Douglas, R.G., and Winterer, E.L. (Eds.), The Deep Sea Drilling Project: A Decade of Progress. Spec. Publ.—Soc. Econ. Paleontol. Mineral., 32:517–546.

Roth, P.H., and Krumbach, K.R., 1986. Middle Cretaceous calcareous nannofossil biogeography and preservation in the Atlantic and Indian Oceans: implications for paleoceanography. Mar. Micropaleontol., 10:235–266.

Ryan, W.B.F., and Cita, M.B., 1977. Ignorance concerning episodes of ocean-wide stagnation. Mar. Geol., 23:197–215.

Sager, W.W., and Han, H.-C., 1993. Rapid formation of the Shatsky Rise oceanic plateau inferred from its magnetic anomaly. Nature, 364:610–613.

Sager, W.W., Handschumacher, D.W., Hilde, T.W.C., and Bracey, D.R., 1988. Tectonic evolution of the northern Pacific Plate and Pacific-Farallon-Izanagi triple junction in the Late Jurassic and Early Cretaceous (M21-M10). Tectonophysics, 155:345–364.

Sager, W.W., Kim, J., Klaus, A., Nakanishi, M., and Khankishieva, L.M., 1999. Bathymetry of Shatsky Rise, northwest Pacific Ocean: implications for ocean plateau development at a triple junction. J. Geophys. Res., 104:7557–7576.

Savin, S.M., 1977. The history of the Earth's surface temperature during the past 100 million years. Annu. Rev. Earth Planet. Sci., 5:319–355.

Schaaf, A., 1981. Late Early Cretaceous radiolarians from Deep Sea Drilling Project Leg 62. In Thiede, J., Vallier, T.L., et al., Init. Repts. DSDP, 62: Washington (U.S. Govt. Printing Office), 419–470.

Schlanger, S.O., Arthur, M.A., Jenkyns, H.C., and Scholle, P.A., 1987. The Cenomanian–Turonian oceanic anoxic event, I. Stratigraphy and distribution of organic carbon-rich beds and the marine 13C excursion. In Brooks, J., and Fleet, A.J. (Eds.), Marine Petroleum Source Rocks. Spec. Publ.—Geol. Soc. London, 26:371–399.

Schlanger, S.O., and Douglas, R.G., 1974. The pelagic ooze-chalk-limestone transition and its implication for marine stratigraphy. In Hsü, K.J., and Jenkyns, H.C. (Eds.), Pelagic Sediments: On Land and Under the Sea. Spec. Publ.—Int. Assoc. Sedimentol., 1:117–148.

Schlanger, S.O., and Jenkyns, H.C., 1976. Cretaceous oceanic anoxic events: causes and consequences. Geol. Mijnbouw, 55:179–184.

Schlanger, S.O., Jenkyns, H.C., and Premoli-Silva, I., 1981. Volcanism and vertical tectonics in the Pacific Basin related to global Cretaceous transgressions. Earth Planet. Sci. Lett., 52:435–449.

Scholle, P.A., and Arthur, M.A., 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. AAPG Bull., 64:67–87.

Shackleton, N.J., 1986. Paleogene stable isotope events. Palaeogeogr., Palaeoclimatol., Palaeoecol., 57:91–102.

Sliter, W.V., 1984. Foraminifers from Cretaceous limestone of the Franciscan Complex, northern California. In Blake, C., Jr. (Ed.), Franciscan Geology of Northern California. SEPM Pacific Sect., 43:149–162.

Sliter, W.V., 1989. Aptian anoxia in the Pacific Basin. Geology, 17:909–912.

Sliter, W.V., 1992. Cretaceous planktonic foraminiferal biostratigraphy and paleoceanographic events in the Pacific Ocean with emphasis on indurated sediment. In Ishizaki, K., and Saito, T. (Eds.), Centenary of Japanese Micropaleontology: Tokyo (Terra Sci.), 281–299.

Sliter, W.V., and Brown, G.R., 1993. Shatsky Rise: seismic stratigraphy and sedimentary record of Pacific paleoceanography since the Early Cretaceous. In Natland, J.H., Storms, M.A., et al., Proc. ODP, Sci. Results, 132: College Station, TX (Ocean Drilling Program), 3–13.

Sliter, W.V., van Waasbergen, R.J., Brown, G.R., and ODP Leg 132 Scientific Party, 1990. Tectonic and stratigraphic evolution of Shatsky Rise. Eos, 71:1673.

Sloan, L.C., and Thomas, E., 1998. Global climate of the late Paleocene epoch: modeling the circumstances associated with a climatic "event." In Aubry, M.P., Lucas, S.G., Berggren, W.A. (Eds.), Late Paleocene–Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records: New York (Columbia Univ. Press), 138–157.

Smit, J., and Romein, A.J.T., 1985. A sequence of events across the Cretaceous-Tertiary boundary. Earth Planet. Sci. Lett., 74:155–170.

Stein, R., Rullkötter, J., and Welte, D.H., 1986. Accumulation of organic-carbon–rich sediments in the late Jurassic and Cretaceous Atlantic Ocean—a synthesis. Chem. Geol., 56:1–32.

Stoll, H.M., and Schrag, D.P., 1996. Evidence for glacial control of rapid sea level changes in the Early Cretaceous. Science, 272:1771–1774.

Storms, M.A., Natland, J.H., et al., 1991. Proc. ODP, Init. Repts., 132: College Station, TX (Ocean Drilling Program).

Stott, L.D., 1992. Higher temperatures and lower pCO2: A climate enigma at the end of the Paleocene Epoch. Paleoceanography, 7: 395–404.

Stott, L.D., and Kennett, J.P., 1990. The paleoceanographic and paleoclimatic signature of the Cretaceous/Paleogene boundary in the Antarctic: stable isotopic results from ODP Leg 113. In Barker, P.F., Kennett, J.P., et al., Proc. ODP, Sci. Results, 113: College Station, TX (Ocean Drilling Program), 829–848.

Stott, L.D., Kennett, J.P., Shackleton, N.J., and Corfield, R.M., 1990. The evolution of Antarctic surface waters during the Paleogene: inferences from the stable isotopic composition of planktonic foraminifers, ODP Leg 113. In Barker, P.F., Kennett, J.P., et al., Proc. ODP, Sci. Results, 113: College Station, TX (Ocean Drilling Program), 849–863.

Tarduno, J.A., Sliter, W.V., Kroenke, L., Leckie, M., Mayer, H., Mahoney, J.J., Musgrave, R., Storey, M., and Winterer, E.L., 1991. Rapid formation of Ontong Java Plateau by Aptian mantle plume volcanism. Science, 254:399–403.

Tatsumi, Y., Shinjoe, H., Ishizuka, H., Sager, W.W., and Klaus, A., 1998. Geochemical evidence for a mid-Cretaceous superplume. Geology, 26:151–154.

Thiede, J., Dean, W.E., and Claypool, G.E., 1982. Oxygen deficient depositional environments in the mid-Cretaceous tropical and subtropical Pacific Ocean. In Schlanger, S.O., and Cita, M.B. (Eds.), Nature and Origin of Cretaceous Carbon-rich Facies: London (Academic Press), 79–100.

Thierstein, H.R., 1979. Paleoceanographic implications of organic carbon and carbonate distribution in Mesozoic deep sea sediments. In Talwani, M., Hay, W., and Ryan, W.B.F. (Eds.), Deep Drilling Results in the Atlantic Ocean. Am. Geophys. Union, Maurice Ewing Ser., 3:249–274.

Thierstein, H.R., 1982. Terminal Cretaceous plankton extinctions: a critical assessment. In Silver, L.T., and Schultz, P.H. (Eds.), Geological Implications of Impacts of Large Asteroids and Comets on the Earth. Spec. Pap.–Geol. Soc. Am., 190:385–399.

Thierstein, H.R., and Berger, W.H., 1978. Injection events in ocean history. Nature, 276:461–466.

Thomas, D.J., Bralower, T.J., and Zachos, J.C., 1999. New evidence for subtropical warming during the late Paleocene thermal maximum: stable isotopes from Deep Sea Drilling Project Site 527, Walvis Ridge. Paleoceanography, 14:561–570.

Thomas, E., 1990. Late Cretaceous–early Eocene mass extinctions in the deep sea. In Sharpton, V.L., and Ward, P.D. (Eds.), Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality. Spec. Pap.—Geol. Soc. Am., 247:481–495.

Thomas, E., 1998. Biogeography of the late Paleocene benthic foraminiferal extinction. In Aubry, M.-P., Lucas, S.G., and Berggren, W.A. (Eds.), Late Paleocene-Early Eocene: Climatic and Biotic Events in the Marine and Terrestrial Records: New York (Columbia Univ. Press), 214–235.

Thomas, E., and Shackleton, N., 1996. The Palaeocene-Eocene benthic foraminiferal extinction and stable isotope anomalies. In Knox, R.W.O'B., Corfield, R.M., and Dunay, R.E. (Eds.), Correlation of the Early Paleogene in Northwest Europe. Spec. Publ.—Geol. Soc. London, 101:401–441.

Thomas, E., and Zachos, J.C., 1999. Deep-sea faunas during the late Paleocene–early Eocene climate optimum: boredom or boredom with short periods of terror. Abstracts with Programs. Geol. Soc. Am., 31:122.

Thomas, E., Zachos, J.C., and Bralower, T.J., 2000. Ice-free to glacial world transition as recorded by benthic foraminifera. In Huber, B.T., MacLeod, K.G., and Wing, S.L. (Eds.), Warm Climates in Earth History: Cambridge (Cambridge Univ. Press), 132–160.

Tissot, B., Durand, B., Espitalié, J., and Combaz, A., 1974. Influence of the nature and diagenesis of organic matter in the formation of petroleum. AAPG Bull., 58:499–506.

Tremolada, F., and Erba, E., in press. Morphometric analysis of Aptian Assipetra infracretacea and Rucinolithus terebrodentarius nannoliths: implications for taxonomy, biostratigraphy, and paleoceanography. Mar. Micropaleo.

van Andel, T.H., 1975. Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments. Earth Planet. Sci. Lett., 26:187–194.

Walter, L.M. and Morse, J.M., 1984. Reactive surface area of skeletal carbonates during dissolution: effect of grain size. J. Sediment. Petrol. 54:1081–1090.

Weissert, H., 1989. C-isotope stratigraphy, a monitor of paleoenvironmental change: a case study from the Early Cretaceous. Surv. Geophys., 10:1–61.

Weissert, H., and Lini, A., 1991. Ice age interludes during the time of Cretaceous greenhouse climate? In Müller, D.W., McKenzie, J.A., and Weissert, H. (Eds.), Controversies in Modern Geology: Evolution of Geological Theories in Sedimentology, Earth History and Tectonics: New York (Academic Press), 173–191.

Wilson, P.A., and Norris, R.D., 2001. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature, 412:425-429.

Wilson, P.A., and Opdyke, B.N., 1996. Equatorial sea-surface temperatures for the Maastrichtian revealed through remarkable preservation of metastable carbonate. Geology, 24:555–558.

Wright, A.A., Bleil, U., Monechi, S., Michel, H.V., Shackleton, N.J., Simoneit, B.R.T., and Zachos, J.C., 1985. Summary of Cretaceous/Tertiary boundary studies, Deep Sea Drilling Project Site 577, Shatsky Rise. In Heath, G.R., Burckle, L.H., et al., Init. Repts. DSDP, 86: Washington (U.S. Govt. Printing Office), 799–804.

Wright, J.D., and Miller, K.G., 1993. Southern Ocean influences on Late Eocene to Miocene deep-water circulation. In Kennett, J.P., and Warnke, D.A. (Eds.), The Antarctic Paleoenvironment: A Perspective on Global Change. Antarct. Res. Ser., 60:1–25.

Zachos, J.C., and Arthur, M.A., 1986. Paleoceanography of the Cretaceous/Tertiary boundary event: inferences from stable isotopic and other data. Paleoceanography, 1:5–26.

Zachos, J.C., Arthur, M.A., and Dean, W.E., 1989. Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature, 337:61–64.

Zachos, J.C., Breza, J.R., and Wise, S.W., 1992a. Early Oligocene ice-sheet expansion on Antarctica: stable isotope and sedimentological evidence from Kerguelen Plateau, southern Indian Ocean. Geology, 20:569–573.

Zachos, J.C., Lohmann, K.C., Walker, J.C.G., and Wise, S.W., Jr., 1993. Abrupt climate changes and transient climates during the Paleogene: a marine perspective. J. Geol., 101:191–213.

Zachos, J.C., Quinn, R.M., and Salamy, K., 1996. High resolution (104 yr) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition. Paleoceanography, 11:251–266.

Zachos, J.C., Rea, D.K., Seto, K., Niitsuma, N., and Nomura, R., 1992b. Paleogene and early Neogene deep water history of the Indian Ocean: inferences from stable isotopic records. In Duncan, R.A., Rea, D.K., Kidd, R.B., von Rad, U., and Weissel, J.K. (Eds.), Synthesis of Results from Scientific Drilling in the Indian Ocean. Geophys. Monogr., Am. Geophys. Union, 70:351–386.

Zachos, J.C., Stott, L.D., and Lohmann, K.C., 1994. Evolution of early Cenozoic marine temperatures. Paleoceanography, 9:353–387.

Zahn, R., Rushdi, A., Pisias, N.G., Bornhold, B.D., Blaise, B., and Karlin, R., 1991. Carbonate deposition and benthic 13C in the subarctic Pacific: implications for changes of the oceanic carbonate system during the past 750,000 years. Earth Planet. Sci. Lett., 103:116–132.

Next Section | Table of Contents