Next Section | Table of Contents


REFERENCES

Agar, S.M., and Lloyd, G.E., 1997. Deformation of Fe-Ti oxides in gabbroic shear zones from the MARK area. In Karson, J.A., Cannat, M., Miller, D.J., and Elthon, D. (Eds.), Proc. ODP, Sci. Results, 153: College Station, TX (Ocean Drilling Program), 123–141.

Aharonov, E., Whitehead, J.A., Kelemen, P.B., and Spiegelman, M., 1995. Channeling instability of upwelling melt in the mantle. J. Geophys. Res., 100:20433–20450.

Amri, I., Benoit, M., and Ceuleneer, G., 1996. Tectonic setting for the genesis of oceanic plagiogranites: evidence from a paleo-spreading structure in the Oman ophiolite. Earth Planet. Sci. Lett., 139:177–194.

Arai, S., and Matsukage, J.H., 1996. Petrology of gabbro-troctolite-peridotite complex from Hess Deep, equatorial Pacific: implications for mantle–melt interaction within the oceanic lithosphere. In Mével, C., Gillis, K.M., Allan, J.F., and Meyer, P.S. (Eds.), Proc. ODP, Sci. Results, 147: College Station, TX (Ocean Drilling Program), 135–155.

Axen, G.J., and Bartley, J.M., 1997. Field tests of rolling hinges; existence, mechanical types, and implications for extensional tectonics. J. Geophys. Res., 102:20515–20537.

Baker, M.B., and Stolper, E.M., 1994. Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim. Cosmochim. Acta, 58:2811–2827.

Barclay, A.H., Toomey, D.R., and Solomon, S.C., 1998. Seismic structure and crustal magmatism at the Mid-Atlantic Ridge, 35°N. J. Geophys. Res., 103:17827–17844.

Barnouin-Jha, K., Parmentier, E.M., and Sparks, D.W., 1997. Buoyant mantle upwelling and crustal production at oceanic spreading centers: on-axis segmentation and off-axis melting. J. Geophys. Res., 102:11979–11989.

Barth, G.A., and Mutter, J.C., 1996. Variability in oceanic crustal thickness and structure: multichannel seismic reflection results from the northern East Pacific Rise. J. Geophys. Res., 101:17951–17975.

Bédard, J., Sparks, R.S.J., Renner, R., Cheadle, M.J., and Hallworth, M.A., 1988. Peridotite sills and metasomatic gabbros in the Eastern Layered Series of the Rhum complex. J. Geol. Soc., 145:207–224.

Bee, M., and Bibee, L.D., 1989. A seismic refraction study of Cretaceous oceanic lithosphere in the northwest Pacific Basin. Mar. Geophys. Res., 11:239–261.

Behn, M.D., and Kelemen, P.B., in press. Relationship between seismic P-wave velocity and the composition of anhydrous igneous and meta-igneous rocks. Geochem. Geophys. Geosyst.

Benoit, M., Polve, M., and Ceuleneer, G., 1996. Trace element and isotopic characterization of mafic cumulates in a fossil mantle diapir (Oman ophiolite). Chem. Geol., 134:199–214.

Bernstein, S., Kelemen, P.B., and Brooks, C.K., 1996. Evolution of the Kap Edvard Holm complex: a mafic intrusion at a rifted continental margin. J. Petrol., 37:497–519.

Bernstein, S., Rosing, M.T., Brooks, C.K., and Bird, D.K., 1992. An ocean-ridge type magma chamber at a passive volcanic, continental margin: the Kap Edvard Holm layered gabbro complex, East Greenland. Geol. Mag., 129:437–456.

Bonatti, E., Peyve, A., Kepezhinskas, P., Kurentsova, N., Seyler, M., Skolotnev, S., and Udintsev, G., 1992. Upper mantle heterogeneity below the Mid-Atlantic Ridge, 0°–15°N. J. Geophys. Res., 97:4461–4476.

Boudier, F., and Coleman, R.G., 1981. Cross section through the peridotite in the Samail ophiolite, southeastern Oman Mountains. J. Geophys. Res., 86:2573–2592.

Boudier, F., Godard, M., and Armbruster, C., 2000. Significance of gabbronorite occurrence in the crustal section of the Semail ophiolite. Mar. Geophys. Res., 21:307–326.

Boudier, F., MacLeod, C.J., and Bolou, L., 1996. Structures in peridotites from Site 895, Hess Deep: implications for the geometry of mantle flow beneath the East Pacific Rise. In Mével, C., Gillis, K.M., Allan, J.F., and Meyer, P.S. (Eds.), Proc. ODP, Sci. Results, 147: College Station, TX (Ocean Drilling Program), 347–356.

Boudier, F., and Nicolas, A., 1995. Nature of the Moho transition zone in the Oman ophiolite. J. Petrol., 36:777–796.

Boudier, F., Nicolas, A., and Ildefonse, B., 1996. Magma chambers in the Oman ophiolite: fed from the top and the bottom. Earth Planet. Sci. Lett., 144:239–250.

Boudreau, A.D., and Philpotts, A.R., 2002. Quantitative modeling of compaction in the Holyoke flood basalt flow, Hartford Basin, Connecticut. Contrib. Mineral. Petrol., 144:176–184.

Bougault, H., Appriou, P., Bienvenu, P., Cambon, P., Charlou, J.L., Collette, B., Donval, J.P., Dosso, L., Floch, G., Fouquet, Y., Morvan, M., Pelle, H., Poncin, J., Thieblemont, D., Vangriesheim, A., and Needham, H.D., 1990. Campagne RIDELENTE: structure de la dorsale Atlantique heterogeniete du manteau et hydrothermalisme. Spec. Publ.—Oceanol. Acta, 10:366–381.

Bougault, H., Charlou, J.L., Fouquet, Y., Needham, H.D., Vaslet, N., Appriou, P., Baptiste, P.J., Rona, P.A., Dmitriev, L., and Silantiev, S., 1993. Fast and slow spreading ridges: structure and hydrothermal activity, ultramafic topographic highs, and CH4 output. J. Geophys. Res., 98:9643–9651.

Bougault, H., Dmitriev, L., Schilling, J.G., Sobolev, A., Joron, J.L., and Needham, H.D., 1988. Mantle heterogeneity from trace elements: MAR triple junction near 14°N. Earth Planet. Sci. Lett., 88:27–36.

Bratt, S.R., and Purdy, G.M., 1984. Structure and variability of oceanic crust on the flanks of the East Pacific Rise between 11° and 13°N. J. Geophys. Res., 89:6111–6125.

Bratt, S.R., and Solomon, S.C., 1984. Compressional and shear wave structure of the East Pacific Rise at 11°20'N: constraints from three-component ocean bottom seismeter data. J. Geophys. Res., 89:6095–6110.

Braun, M.G., Hirth, G., and Parmentier, E.M., 2000. The effects of deep damp melting on mantle flow and melt generation beneath mid-ocean ridges. Earth Planet. Sci. Lett., 176:339–356.

Braun, M.G., and Kelemen, P.B., 2002. Dunite distribution in the Oman ophiolite: implications for melt flux through porous dunite conduits. Geochem. Geophys. Geosyst., 3:10.1029/2001GC000289.

Browning, P., 1984. Cryptic variation within the cumulate sequence of the Oman ophiolite: magma chamber depth and petrological implications. In Gass, I.G., Lippard, S.J., and Shelton, A.W. (Eds.), Ophiolites and Oceanic Lithosphere. Spec. Publ.—Geol. Soc. London, 13:71–82.

Browning, P., Roberts, S., and Alabaster, T., 1989. Fine-scale modal layering and cyclic units in ultramafic cumumlates from the CY-4 borehole, Troodos ophiolite: evidence for an open system magma chamber, in drillhole CY-4, the Troodos ophiolite, Cyprus. In Gibson, I.L., Malpas, J., Robinson, P.T., and Xenophontos, C. (Eds.), Cyprus Crustal Study Project: Initial Report, Hole CY-4. Pap.—Geol. Surv. Can., 193–220.

Buck, W.R., and Su, W., 1989. Focused mantle upwelling below mid-ocean ridges due to feedback between viscosity and melting. Geophys. Res. Lett., 16:641–644.

Burnard, P., Graham, D., and Turner, G., 1997. Vesicle-specific noble gas analyses of "popping rock": implications for primordial noble gases in Earth. Science, 276:568–571.

Canales, P.J., Detrick, R.S., Bazin, S., Harding, A.J., and Orcutt, J.A., 1998. Off-axis crustal thickness across and along the East Pacific Rise within the MELT area. Science, 280:1218–1221.

Canales, P.J., Detrick, R.S., Lin, J., and Collins, J., 2000. Crustal and upper mantle seismic structure beneath the rift mountains and across a nontransform offset at the Mid-Atlantic Ridge (35°N). J. Geophys. Res., 105:2699–2719.

Canales, P.J., Detrick, R.S., Toomey, D.R., and Wilcock, W.S.D., 2003. Segment-scale variations in the crustal structure of 150–300 kyr old fast spreading oceanic crust (East Pacific Rise, 8°15'N–10°5'N) from wide-angle seismic refraction profiles. Geophys. J. Int., 152:766–794.

Cannat, M., 1993. Emplacement of mantle rocks in the seafloor at mid-ocean ridges. J. Geophys. Res., 98:4163–4172.

————, 1996. How thick is the magmatic crust at slow-spreading oceanic ridges? J. Geophys. Res., 101:2847–2857.

Cannat, M., Bideau, D., and Bougault, H., 1992. Serpentinized peridotites and gabbros in the Mid-Atlantic Ridge axial valley at 15°37'N and 16°52'N. Earth Planet. Sci. Lett., 109:87–106.

Cannat, M., and Casey, J.F., 1995. An ultramafic lift at the Mid-Atlantic Ridge: successive stages of magmatism in serpentinized peridotites from the 15°N region. In Vissers, R.L.M., and Nicolas, A. (Eds.), Mantle and Lower Crust Exposed in Oceanic Ridges and Ophiolites: Dordrecht (Kluwer), 5–34.

Cannat, M., Chatin, F., Whitechurch, H., and Ceuleneer, G., 1997a. Gabbroic rocks trapped in the upper mantle at the Mid-Atlantic Ridge. In Karson, J.A., Cannat, M., Miller, D.J., and Elthon, D. (Eds.), Proc. ODP, Sci. Results, 153: College Station, TX (Ocean Drilling Program), 243–264.

Cannat, M., Karson, J.A., Miller, D.J., et al., 1995. Proc. ODP, Init. Repts., 153: College Station, TX (Ocean Drilling Program).

Cannat, M., Lagabrielle, Y., Bougault, H., Casey, J., de Coutures, N., Dmitriev, L., and Fouquet, Y., 1997b. Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge: geological mapping in the 15°N region. Tectonophysics, 279:193–213.

Cannat, M., Mével, C., Maia, M., Deplus, C., Durand, C., Gente, P., Agrinier, P., Belarouchi, A., Dubuisson, G., et al., 1995. Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22°–24°N). Geology, 23:49–52.

Cary, P.W., and Chapman, C.H., 1988. Automatic 1-D waveform inversion of marine seismic refraction data. Geophys. J. R. Astron. Soc., 93:527–546.

Casey, J.F., 1997. Comparison of major- and trace-element geochemistry of abyssal peridotites and mafic plutonic rocks with basalts from the MARK region of the Mid-Atlantic Ridge. In Karson, J.A., Cannat, M., Miller, D.J., and Elthon, D. (Eds.), Proc. ODP, Sci. Results, 153: College Station, TX (Ocean Drilling Program), 181–241.

Casey, J.F., Braun, M., Kelemen, P.B., Fujiwara, T., Matsumoto, T., and Shipboard Scientific Party, 1998. Megamullions along the Mid-Atlantic Ridge between 14° and 16°N: results of Leg 1, JAMSTEC/WHOI MODE 98 Survey. Eos, Trans. Am. Geophys. Union, 79:F920.

Casey, J.F., Bryan, W.F., and Silantyev, S., 1994. Comparison of the geochemistry of basaltic, plutonic and residual mantle rocks from the Mid-Atlantic Ridge: evidence of near fractional melting and mixing. Eos, Trans. Am. Geophys. Union, 75:657.

Casey, J.F., Bryan, W.B., Xia, C., Smith, S., Dmitriev, L., Silantiev, S., and Melson, W.G., 1992. Basalt compositional trends, 12° to 38°N along the Mid-Atlantic Ridge: local paradigms. Eos, Trans. Am. Geophys. Union, 73:584.

Casey, J.F., Smith, S.E., Bryan, W.B., and Silantyev, S., 1995. Major and trace element geochemistry of basalts, gabbros, and peridotites from the northern MAR: an assessment of the range of subaxial parental and evolved melt compositions. Eos, Trans. Am. Geophys. Union, 76:694.

Ceuleneer, G., 1991. Evidences for a paleo-spreading center in the Oman ophiolite: mantle structures in the Maqsad area. In Peters, T., Nicolas, A., and Coleman, R.G. (Eds.), Ophiolite Genesis and Evolution of Oceanic Lithosphere: Dordrecht (Kluwer), 147–173.

Ceuleneer, G., and Cannat, M., 1997. High-temperature ductile deformation of Site 920 peridotites. In Karson, J.A., Cannat, M., Miller, D.J., and Elthon, D. (Eds.), Proc. ODP, Sci. Results, 153: College Station, TX (Ocean Drilling Program), 23–34.

Ceuleneer, G., Nicolas, A., and Boudier, F., 1988. Mantle flow patterns at an oceanic spreading centre: the Oman peridotite record. Tectonophysics, 151:1–26.

Ceuleneer, G., and Rabinowicz, M., 1992. Mantle flow and melt migration beneath ocean ridges: models derived from observations in ophiolites. In Phipps Morgan, J.B., Blackman, D.K., and Sinton, J.M. (Eds.), Mantle Flow and Melt Generation at Mid-Ocean Ridges. Geophys. Monogr., Am. Geophys. Union, 71:123–154.

Chambers, A.D., and Brown, P.E., 1995. The Lilloise intrusion, East Greenland: fractionation of a hydrous alkali picritic magma. J. Petrol., 36:933–963.

Chidester, A.H., 1962. Petrology and geochemistry of selected talc-bearing ultramafic rocks and adjacent country rocks in north-central Vermont. U.S. Geol. Surv. Prof. Pap.

Christensen, N.I., and Mooney, W.D., 1995. Seismic velocity structure and composition of the continental crust: a global view. J. Geophys. Res., 100:9761–9788.

Christensen, N.I., and Salisbury, M.H., 1975. Structure and constitution of the lower oceanic crust. Rev. Geophys. Space Phys., 13:57–86.

Collins, J.A., Detrick, R.S., Stephen, R.A., Kent, G.M., and Swift, S.A., 1995. Hole 504B seismic experiment: new constraints on the depth of the seismic Layer2/Layer3 boundary. Eos, Trans. Am. Geophys. Union, 76:F616.

Collins, J.A., Purdy, M.G., and Brocher, T.M., 1989. Seismic velocity structure at Deep Sea Drilling Project Site 504B, Panama Basin: evidence for thin oceanic crust. J. Geophys. Res., 94:9283–9302.

Collins, M.D., and Brown, J.M., 1998. Elasticity of an upper mantle pyroxene. Phys. Chem. Miner., 26:7–13.

Crane, K., 1985. The spacing of rift axis highs: dependence upon diapiric processes in the underlying asthenosphere. Earth Planet. Sci. Lett., 72:405–414.

Crawford, A.J. (Ed.), 1989. Boninites and Related Rocks: London (Unwin Hyman).

Daines, M.J., and Kohlstedt, D.L., 1997. Influence of deformation on melt topology in peridotites. J. Geophys. Res., 102:10257–10271.

DePaolo, D.J., 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet. Sci. Lett., 53:189–202.

Detrick, R.S., Collins, J.A., Stephen, R.A., and Swift, S.A., 1994. In situ evidence for the nature of the seismic Layer 2/3 boundary in oceanic crust. Nature, 370:288–290.

Detrick, R.S., and Purdy, G.M., 1980. The crustal structure of the Kane Fracture Zone from seismic refraction studies. J. Geophys. Res., 85:3759–3777.

Detrick, R.S., Toomey, D.R., and Collins, J.A., 1998. Three-dimensional upper crustal heterogeneity and anisotropy around Hole 504B from seismic topography. J. Geophy. Res., 103:30485–30504.

Detrick, R.S., White, R.S., and Purdy, G.M., 1993. Crustal structure of North Atlantic fracture zones. Rev. Geophys., 31:439–458.

Dick, H.J.B., 1989. Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. In Saunders, A.D., and Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Spec. Publ.—Geol. Soc. London, 42:71–105.

Dick, H.J.B., and Bullen, T., 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol., 86:54–76.

Dick, H.J.B., Fisher, R.L., and Bryan, W.B., 1984. Mineralogic variability of the uppermost mantle along mid-ocean ridges. Earth Planet. Sci. Lett., 69:88–106.

Dick, H.J.B., and Kelemen, P.B., 1992. Light rare earth element enriched clinopyroxene in harzburgites from 15°05'N on the Mid-Atlantic Ridge. Eos, Trans. Am. Geophys. Union, 73:584.

Dick, H.J.B., Meyer, P.S., Bloomer, S., Kirby, S., Stakes, D., and Mawer, C., 1991. Lithostratigraphic evolution of an in-situ section of oceanic Layer 3. In Von Herzen, R.P., Robinson, P.T., et al., Proc. ODP, Sci. Results, 118: College Station, TX (Ocean Drilling Program), 439–538.

Dick, H.J.B., Natland, J.H., Alt, J.C., Bach, W., Bideau, D., Gee, J.S., Haggas, S., Hertogen, J.G.H., Hirth, G., Holm, P.M., Ildefonse, B., Iturrino, G.J., John, B.E., Kelley, D.S., Kikawa, E., Kingdon, A., LeRoux, P.J., Maeda, J., Meyer, P.S., Miller, D.J., Naslund, H.R., Niu, Y., Robinson, P.T., Snow, J., Stephen, R.A., Trimby, P.W., Worm, H.-U., and Yoshinobu, A., 2000. A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth Planet. Sci. Lett., 179:31–51.

Dick, H.J.B., Ozawa, K., Meyer, P.S., Niu, Y., Robinson, P.T., Constantin, M., Hebert, R., Natland, J.H., Hirth, G., and Mackie, S.M., 2002. Primary silicate mineral chemistry of a 1.5-km section of very slow spreading lower ocean crust: ODP Hole 735B, Southwest Indian Ridge. In Natland, J.H., Dick, H.J.B, Miller, D.J., and Von Herzen, R.P. (Eds.), Proc. ODP, Sci. Results, 176, 1–60 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA.

Dosso, L., Bougault, H., and Joron, J.L., 1993. Geochemical morphology of the North Atlantic Ridge, 10°–24°N: trace element-isotope complementarity. Earth Planet. Sci. Lett., 120:443–462.

Dosso, L., Hanan, B.B., Bougault, H., Schilling, J.G., and Joron, J.L., 1991. Sr-Nd-Pb geochemical morphology between 10°N and 17°N on the Mid-Atlantic Ridge—a new MORB isotope signature. Earth Planet. Sci. Lett., 106:29–43.

Duennebier, F.K., Lienert, B., Cessaro, R., Anderson, P., and Mallick, S., 1987. Controlled-source seismic experiment at Hole 581C. In Duennebier, F.K., Stephen, R., et al., Init. Repts. DSDP, 88: Washington (U.S. Govt. Printing Office), 105–125.

Dunn, R.A., and Toomey, D.R., 1997. Seismological evidence for three-dimensional melt migration beneath the East Pacific Rise. Nature, 388:259–262.

Elthon, D., and Scarfe, C.M., 1984. High-pressure phase equilibria of a high-magnesia basalt and the genesis of primary oceanic basalts. Am. Mineral., 69:1–15.

Elthon, D., Stewart, M., and Ross, D.K., 1992. Compositional trends of minerals in oceanic cumulates. J. Geophys. Res., 97:15189–15199.

Escartin, J., and Cannat, M., 1999. Ultramafic exposures and the gravity signature of the lithosphere near the Fifteen-Twenty Fracture Zone (Mid-Atlantic Ridge, 14°–16.5°N). Earth Planet. Sci. Lett., 171:411–424.

Escartin, J., Mével, C., MacLeod, C.J., and McCraig, A., in press. Constraints on deformation conditions and the origin of oceanic detachments, the Mid-Atlantic Ridge core complex at 15°45'N. Geochem. Geophys. Geosyst.

Forsyth, D.W., Webb, S.C., Dorman, L.M., and Shen, Y., 1998. Phase velocities of Rayleigh waves in the MELT experiment from the East Pacific Rise. Science, 280:1235–1237.

Fowler, C.M.R., 1976. Crustal structure of the Mid-Atlantic Ridge crest at 37°N. Geophys. J. R. Astron. Soc., 47:459–491.

————, 1978. The Mid-Atlantic Ridge, structure at 45°N. Geophys. J. R. Astron. Soc., 54:167–183.

Fowler, C.M.R., and Keen, C.E., 1979. Oceanic crustal structure–Mid-Atlantic Ridge at 45°N. Geophys. J. R. Astron. Soc., 56:219–226.

Fujiwara, T., Lin, J., Matsumoto, T., Kelemen, P.B., Tucholke, B.E., and Casey, J., 2003. Crustal evolution of the Mid-Atlantic Ridge near the Fifteen-Twenty Fracture Zone in the last 5 Ma. Geochem. Geophys. Geosyst., 4:10.1029/2002GC000364.

Gaetani, G.A., DeLong, S.E., and Wark, D.A., 1995. Petrogenesis of basalts from the Blanco Trough, northeast Pacific: inferences for off-axis melt generation. J. Geophys. Res., 100:4197–4214.

Ghose, I., Cannat, M., and Seyler, M., 1996. Transform fault effect on mantle melting in the MARK area (Mid-Atlantic Ridge south of the Kane transform). Geology, 24:1139–1142.

Gibson, I.L., Beslier, M.-O., Cornen, G., Milliken, K.L., and Seifert, K.E., 1996. Major- and trace-element seawater alteration profiles in serpentinite formed during the development of the Iberia Margin, Site 897. In Whitmarsh, R.B., Sawyer, D.S., Klaus, A., and Masson, D.G. (Eds.), Proc. ODP, Sci. Results, 149: College Station, TX (Ocean Drilling Program), 519–527.

Ginzburg, A., Whitmarsh, R.B., Roberts, D.G., Montadert, L., Camus, A., and Avedik, F., 1985. The deep seismic structure of the northern continental margin of the Bay of Biscay. Ann. Geophys., 3:499–427.

Godard, M., Jousselin, D., and Bodinier, J.-L., 2000. Relationships between geochemistry and structure beneath a paleo-spreading centre: a study of the mantle section in the Oman ophiolite. Earth Planet. Sci. Lett., 180:133–148.

Green, D.H., and Hibberson, W., 1970. The instability of plagioclase in peridotite at high pressure. Lithos, 3:209–221.

Grove, T.L., Kinzler, R.J., and Bryan, W.B., 1992. Fractionation of mid-ocean ridge basalt (MORB). In Morgan, J.P., Blackman, D.K., and Sinton, J.M. (Eds.), Mantle Flow and Melt Generation at Mid-Ocean Ridges. Geophys. Monogr., Am. Geophys. Union, 71:281–310.

Hacker, B.R., Abers, G.A., and Peacock, S.M., 2003. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J. Geophys. Res., 108:10.1029/2001JB001127.

Hanford, R.F., 1982. Growth of ultramafic reaction zones in greenschist to amphibolite facies metamorphism. Am. J. Sci., 282:543–616.

Hart, S.R., and Davis, K.E., 1978. Nickel partitioning between olivine and silicate melt. Earth Planet. Sci. Lett., 40:203–219.

Hart, S.R., Schilling, J.-G., and Powell, J.L., 1973. Basalts from Iceland and along the Reykjanes Ridge: Sr isotope geochemistry. Nature, 246:104–107.

Heling, D., and Schwarz, A., 1992. Iowaite in serpentinite muds at Sites 778, 779, 780, and 784: a possible cause for the low chlorinity of pore waters. In Fryer, P., Pearce, J.A., Stokking, L.B., et al., Proc. ODP, Sci. Results, 125: College Station, TX (Ocean Drilling Program), 313–323.

Hirschmann, M., 1992. Origin of the transgressive granophyres from the layered series of the Skaergaard intrusion, East Greenland. J. Volc. Geotherm. Res., 52:185–207.

Hofmann, A.W., 1988. Chemical differentiation of the Earth: the relationship between mantle, continental crust and oceanic crust. Earth Planet. Sci. Lett., 90:297–314.

Hooft, E.E.E., Detrick, R.S., Toomey, D.R., Collins, J.A., and Lin, J., 2000. Crustal and upper mantle structure along three contrasting spreading segments of the Mid-Atlantic Ridge (33.5°–35° N). J. Geophys. Res., 105:8205–8226.

Hurst, S.D., Gee, J.S., and Lawrence, R.M., 1997. Data report: Reorientation of structural features at Sites 920 to 924 using remanent magnetization and magnetic characteristics. In Karson, J.A., Cannat, M., Miller, D.J., and Elthon, D. (Eds.), Proc. ODP, Sci. Results, 153: College Station, TX (Ocean Drilling Program), 547–559.

Ishizuka, H., Fujimoto, H., Bryan, W., Fujiwara, T., Furuta, T., Kelemen, P., Kinoshita, H., Kobayashi, K., Matsumoto, T., Takeuchi, A., and Tivey, M., 1995. Oceanic lower crust and upper mantle materials in transform fault zone of WMARK. JAMSTEC J., Deep-Sea Res., 11:37–52. (Japanese with English abstr.)

Jacques, A.L., and Green, D.H., 1980. Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts. Contrib. Mineral. Petrol., 73:287–310.

Javoy, M., and Pineau, F., 1991. The volatiles record of a "popping" rock from the Mid-Atlantic Ridge at 14°N: chemical and isotopic composition of gas trapped in the vesicles. Earth Planet. Sci. Lett., 107:598–611.

Jha, K., Parmentier, E.M., and Phipps Morgan, J., 1994. The role of mantle-depletion and melt-retention buoyancy in spreading-center segmentation. Earth Planet. Sci. Lett., 125:221–234.

John, B.E., 1987. Geometry and evolution of a mid-crustal extensional fault system; Chemehuevi Mountains, southeastern California. In Coward, M.P., Dewey, J.F., and Hancock, P.L. (Eds.), Continental Extensional Tectonics, Spec. Publ.—Geol. Soc. Am., 28:313–335.

John, B.E., and Foster, D.A., 1993. Structural and thermal constraints on the initiation angle of detachment faulting in the Southern Basin and Range, the Chemehuevi Mountains case study. Bull. Geol. Soc. Am., 105:1091–1108.

Jousselin, D., Nicolas, A., and Boudier, F., 1998. Detailed mapping of a mantle diapir below a paleo-spreading center in the Oman ophiolite. J. Geophys. Res., 103:18153–18170.

Kelemen, P.B., 1986. Assimilation of ultramafic rocks in subduction-related magmatic arcs. J. Geol., 94:829–843.

————, 1990. Reaction between ultramafic rock and fractionating basaltic magma, I. Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite. J. Petrol., 31:51–98.

Kelemen, P.B., and Aharonov, E., 1998. Periodic formation of magma fractures and generation of layered gabbros in the lower crust beneath oceanic spreading centers. In Buck, R., Delaney, P.T., Karson, J.A., and Lagabrielle, Y. (Eds.), Faulting and Magmatism at Mid-Ocean Ridges. Geophys. Monogr., 106:267–289.

Kelemen, P.B., Braun, M.G., and Hirth, G., 2000. Spatial distribution of melt conduits in the mantle beneath oceanic spreading ridges: observations from the Ingalls and Oman ophiolites. Geochem., Geophys., Geosyst., 1:1029/1999GC000012.

Kelemen, P.B., Hart, S.R., and Bernstein, S., 1998a. Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet. Sci. Lett., 164:387–406.

Kelemen, P.B., Hirth, G., Shimizu, N., Spiegelman, M., and Dick, H.J.B., 1997a. A review of melt migration processes in the asthenospheric mantle beneath oceanic spreading centers. Philos. Trans. R. Soc. London, Ser. A, 355:283–318.

Kelemen, P.B., Koga, K., and Shimizu, N., 1997b. Geochemistry of gabbro sills in the crust–mantle transition zone of the Oman ophiolite: implications for the origin of the oceanic lower crust. Earth Planet Sci. Lett., 146:475–488.

Kelemen, P.B., Matsumoto, T., and Shipboard Scientific Party, 1998b. Geological results of MODE 98, Leg 1: JAMSTEC/WHOI Shinkai 6500 cruise to 15°N, Mid-Atlantic Ridge. Eos, Trans. Am., Geophys. Union, 79:F45.

Kelemen, P.B., Shimizu, N., and Salters, V.J.M., 1995a. Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature, 375:747–753.

Kelemen, P.B., Whitehead, J.A., Aharonov, E., and Jordahl, K.A., 1995b. Experiments on flow focusing in soluble porous media, with applications to melt extraction from the mantle. J. Geophys. Res., 100:475–496.

Kelso, P.R., Richter, C., and Pariso, J.E., 1996. Rock magnetic properties, magnetic mineralogy, and paleomagnetism of peridotites from Site 895, Hess Deep. In Mével, C., Gillis, K.M., Allan, J.F., and Meyer, P.S. (Eds.), Proc. ODP, Sci. Results, 147: College Station, TX (Ocean Drilling Program), 405–413.

Kikawa, E., Kelso, P.R., Pariso, J.E., and Richter, C., 1996. Paleomagnetism of gabbroic rocks and peridotites from Sites 894 and 895, Leg 147, Hess Deep: results of half-core and whole-core measurements. In Mével, C., Gillis, K.M., Allan, J.F., and Meyer, P.S. (Eds.), Proc. ODP, Sci. Results, 147: College Station, TX (Ocean Drilling Program), 383–391.

Kinzler, R.J., and Grove, T.L., 1992. Primary magmas of mid-ocean ridge basalts, 2. Applications. J. Geophys. Res., 97:6907–6926.

————, 1993. Corrections and further discussion of the primary magmas of mid-ocean ridge basalts, 1 and 2. J. Geophys. Res., 98:22339–22347.

Koga, K.T., Kelemen, P.B., and Shimizu, N., 2001. Petrogenesis of the crust-mantle transition zone and the origin of lower crustal wehrlite in the Oman ophiolite. Geochem. Geophys. Geosyst., 2:10.1029/2000GC000132.

Kohlstedt, D.L., and Zimmerman, M.E., 1996. Rheology of partially molten mantle rocks. Annu. Rev. Earth Planet. Sci., 24:41–62.

Korenaga, J., Holbrook, W.S., Kent, G.M., Kelemen, P.B., Detrick, R.S., Larsen, H.-C., Hopper, J.R., and Dahl-Jensen, T., 2000. Crustal structure of the Southeast Greenland margin from joint refraction and reflection seismic tomography. J. Geophys. Res., [Solid Earth Planets], 105:21259–21614.

Korenaga, J., and Kelemen, P.B., 1997. Origin of gabbros sills in the Moho transition zone of the Oman ophiolite: implications for magma transport in the oceanic lower crust. J. Geophys. Res., 102:27.

————, 1998. Melt migration through the oceanic lower crust: a constraint from melt percolation modeling with finite solid diffusion. Earth Planet. Sci. Lett., 156:1–11.

Korenaga, J., Kelemen, P.B., and Holbrook, W.S., 2002. Methods for resolving the origin of large igneous provinces from crustal seismology. J. Geophys. Res., [Solid Earth Planets], 107:27.

Kuo, B.-Y., and Forsyth, D.W., 1988. Gravity anomalies of the ridge-transform system in the South Atlantic between 31° and 34.5°S: upwelling centers and variations in crustal thickness. Mar. Geophys. Res., 10:205–232.

Langmuir, C.H., and Bender, J.F., 1984. The geochemistry of oceanic basalts in the vicinity of transform faults: observations and implications. Earth Planet. Sci. Lett., 69:107–127.

Lawrence, R.M., Gee, J.S., and Hurst, S.D., 1997. Magnetic anisotropy in serpentinized peridotites from Site 920: its origin and relationship to deformation fabrics. In Karson, J.A., Cannat, M., Miller, D.J., and Elthon, D. (Eds.), Proc. ODP, Sci. Results, 153: College Station, TX (Ocean Drilling Program), 419–427.

Lewis, B.T.R., and Garmany, J.D., 1982. Constraints on the structure of the East Pacific Rise from seismic refraction data. J. Geophys. Res., 87:8417–8425.

Lewis, B.T.R., and Snydsman, W.E., 1979. Fine structure of the oceanic crust on the Cocos plate. Tectonophysics, 55:87–105.

Lin, J., and Phipps Morgan, J., 1992. The spreading rate dependence of three-dimensional midocean ridge gravity structure. Geophys. Res. Lett., 19:13–16.

Lin, J., Purdy, G.M., Schouten, H., Sempéré, J.-C., and Zervas, C., 1990. Evidence from gravity data for focused magmatic accretion along the Mid-Atlantic Ridge. Nature, 344:627–632.

MacLeod, C.J., Escartin, J., Banerji, D., Banks, G.J., Gleeson, M., Irving, D.H.B., Lilly, R.B., McCraig, A., Niu, Y., Allerton, S., and Smith, D.K., 2002. Direct geological evidence for oceanic detachment faulting. Geology, 30:879–882.

Magde, L.S., Dick, H.J.B., and Hart, S.R., 1995. Tectonics, alteration and the fractal distribution of hydrothermal veins in the lower ocean crust. Earth Planet. Sci. Lett., 129:103–119.

Magde, L.S., Sparks, D.W., and Detrick, R.S., 1997. The relationship between buoyant mantle flow, melt migration, and gravity bull's eyes at the Mid-Atlantic Ridge between 33°N and 35°N. Earth Planet. Sci. Lett., 148:59–67.

Matsumoto, T., Kelemen, P.B., and Party, O.S., 1998. Preliminary results of the precise geological and geophysical mapping of the Mid-Atlantic Ridge 14–16°N—tectonic extension along the magma-poor ridge axis. Eos, Trans. Am. Geophys. Union, 79:F46.

Matveev, S., and Ballhaus, C., 2002. Role of water in the origin of podiform chromitite deposits. Earth Planet. Sci. Lett., 203:235–243.

McClain, J.S., and Atallah, C.A., 1986. Thickening of the oceanic crust with age. Geology, 14:574–576.

Melson, W.G., Byerly, G.R., Nelen, J.A., O'Hearn, T., Wright, T.L., and Vallier, T., 1977. A catalog of the major element chemistry of abyssal volcanic glasses. Smithsonian Contrib. Earth Sci., 19:31–60.

MELT Team, T.M.S., 1998. Imaging the deep seismic structure beneath a mid-ocean ridge: the MELT experiment. Science, 280:1215–1218.

Meurer, W.P., Sturm, M.A., Klein, E.M., and Karson, J.A., 2001. Basalt compositions from the Mid-Atlantic Ridge at the SMARK area (22°30'N to 22°50'N): implications for parental liquid variability at isotopically homogeneous spreading centers. Earth Planet. Sci. Lett., 186:451-469.

Michael, P.J., and Chase, R.L., 1987. The influence of primary magma composition, H2O and pressure on mid-ocean ridge basalt differentiation. Contrib. Mineral. Petrol., 96:245–263.

Miller, D.J., and Christensen, N.I., 1997. Seismic velocities of lower crustal and upper mantle rocks from the slow-spreading Mid-Atlantic Ridge, south of the Kane Transform Zone (MARK). In Karson, J.A., Cannat, M., Miller, D.J., and Elthon, D. (Eds.), Proc. ODP, Sci. Results, 153: College Station, TX (Ocean Drilling Program), 437–454.

Minshull, T.A., White, R.S., Mutter, J.C., Buhl, P., Detrick, R.S., Williams, C.A., and Morris, E., 1991. Crustal structure at the Blake Spur Fracture Zone from expanding spread profiles. J. Geophys. Res., 96:9955–9984.

Mithal, R., and Mutter, J.C., 1989. A low-velocity zone within the Layer 3 region of 118 Myr old oceanic crust in the western Atlantic. Geophys. J. R. Astron. Soc., 97:275–294.

Moore, J.G., Batchelder, J.N.N., and Cunningham, C.G., 1977. CO2 filled vesicles in mid-ocean ridge basalts. J. Volcanol. Geotherm. Res., 2:309–374.

Moreira, M., Kunz, J., and Allègre, C., 1998. Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle. Science, 279:1178–1181.

Morris, E., Detrick, R.S., Minshull, T.A., Mutter, J.C., White, R.S., Su, W., and Buhl, P., 1993. Seismic structure of oceanic crust in the western North Atlantic. J. Geophys. Res., 98:13879–13903.

Natland, J.H., and Dick, H.J.B., 1996. Melt migration through high-level gabbroic cumulates of the East Pacific Rise at Hess Deep: the origin of magma lenses and the deep crustal structure of fast-spreading ridges. In Mével, C., Gillis, K.M., Allan, J.F., and Meyer, P.S. (Eds.), Proc. ODP, Sci. Results, 147: College Station, TX (Ocean Drilling Program), 21–58.

————, 2002. Stratigraphy and composition of gabbros drilled at Ocean Drilling Program Hole 735B, Southwest Indian Ridge: a synthesis of geochemical data. In Natland, J.H., Dick, H.J.B., Miller, D.J., and Von Herzen, R.P. (Eds.), Proc. ODP, Sci. Results, 176, 1–69 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA.

Natland, J.H., Meyer, P.S., Dick, H.J.B., and Bloomer, S.H., 1991. Magmatic oxides and sulfides in gabbroic rocks from Hole 735B and the later development of the liquid line of descent. In Von Herzen, R.P., Robinson, P.T., et al., Proc. ODP, Sci. Results, 118: College Station, TX (Ocean Drilling Program), 75–111.

Navon, O., and Stolper, E., 1987. Geochemical consequences of melt percolation: the upper mantle as a chromatographic column. J. Geol., 95:285–307.

Nicolas, A., 1986. A melt extraction model based on structural studies in mantle peridotites J. Petrol., 27:999–1022.

————, 1990. Melt extraction from mantle peridotites: hydrofracturing and porous flow, with consequences for oceanic ridge activity. In Ryan, M.P. (Ed.), Magma Transport and Storage: Chichester (Wiley), 159–173.

Nicolas, A., and Boudier, F., 1995. Mapping oceanic ridge segments in Oman ophiolites. J. Geophys. Res., 100:6179–6197.

Nicolas, A., Boudier, F., and Ildefonse, B., 1996. Variable crustal thickness in the Oman ophiolite: implication for oceanic crust. J. Geophys. Res., 101:17941–17950.

Nicolas, A., and Rabinowicz, M., 1984. Mantle flow pattern at oceanic spreading centres: relation with ophiolitic and oceanic structures. In Gass, I.G., Lippard, S.J., and Shelton, A.W. (Eds.), Ophiolites and Oceanic Lithosphere. Spec. Publ.—Geol. Soc. London, 13:147–151.

Nicolas, A., and Violette, J.F., 1982. Mantle flow at oceanic spreading centers: models derived from ophiolites. Tectonophysics, 81:319–339.

Niu, Y., Gilmore, T., Mackie, S., Greig, A., and Bach, W., 2002. Mineral chemistry, whole-rock compositions, and petrogenesis of Leg 176 gabbros: data and discussion. In Natland, J.H., Dick, H.J.B., Miller, D.J., and Von Herzen, R.P. (Eds.), Proc. ODP, Sci. Results, 176, 1–60 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA.

O'Hara, M.J., 1965. Primary magmas and the origin of basalts. Scott. J. Geol., 1:19–40.

Orcutt, J.A., Kennett, B., and Dorman, L., 1976. Structure of the East Pacific Rise from an ocean bottom seismometer survey. Geophys. J. R. Astron. Soc., 45:305–320.

Ozawa, K., Meyer, P.S., and Bloomer, S.H., 1991. Mineralogy and textures of iron titanium oxide gabbros and associated olivine gabbros from Hole 735B. In Von Herzen, R.P., Robinson, P.T., et al., Proc. ODP, Sci. Results, 118: College Station, TX (Ocean Drilling Program), 41–73.

Pallister, J.S., and Hopson, C.A., 1981. Samail ophiolite plutonic suite: field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber. J. Geophys. Res., 86:2593–2644.

Parmentier, E.M., and Phipps Morgan, J., 1990. Spreading rate dependence of three-dimensional structure in oceanic spreading centers. Nature, 348:325–328.

Pettigrew, T.L., Casey, J.F., Miller, D.J., et al., 1999. Proc. ODP, Init. Repts., 179 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station, TX 77845-9547, U.S.A.

Peyve, A.A., Suchevskaya, N.M., Lyapunov, S.M., and Konokova, N.N., 1988. Peculiarities of tholeiitic magmatism in the area of the Cape Verde Fracture Zone in the Atlantic (13–15°N). Dokl. Akad. Nauk USSR, 302:1174–1178. (in Russian)

Phipps, S.P., and Ballotti, D., 1992. Rheology of serpentinite muds in the Mariana–Izu Bonin forearc. In Freyer, P., Pearce, J.A., Stokking, L.B., et al., Proc. ODP, Sci. Results, 125, College Station, TX (Ocean Drilling Program), 363–372.

Phipps Morgan, J., 1987. Melt migration beneath mid-ocean spreading centers. Geophys. Res. Lett., 14:1238–1241.

Phipps Morgan, J., and Forsyth, D.W., 1988. Three-dimensional flow and temperature perturbations due to a transform offset: effects on oceanic crustal and upper mantle structure. J. Geophys. Res., 93:2955–2966.

Pineau, F., Javoy, M., and Bottinga, Y., 1976. 13C/12C ratios of rocks and inclusions in popping rocks of the Mid-Atlantic Ridge. Earth Planet. Sci. Lett., 29:413–421.

Purdy, G.M., 1983. The seismic structure of 140 Myr old crust in the western central Atlantic Ocean. Geophys. J. R. Astron. Soc., 72:115–137.

Purdy, G.M., and Detrick, R.S., 1986. Crustal structure of the Mid-Atlantic Ridge at 23°N from seismic refraction studies. J. Geophys. Res., 91:3739–3762.

Rabinowicz, M., Ceuleneer, M., and Nicolas, A., 1987. Melt segregation and flow in mantle diapirs below spreading centers: evidence from the Oman ophiolites. J. Geophys. Res., 92:3475–3486.

Rabinowicz, M., Nicolas, A., and Vigneresse, J.L., 1984. A rolling mill effect in asthenosphere beneath oceanic spreading centers. Earth Planet. Sci. Lett., 67:97–108.

Reid, I., and Jackson, H.R., 1981. Oceanic spreading rate and crustal thickness. Mar. Geophys. Res., 5:165–172.

Richter, C., Kelso, P.R., and MacLeod, C.J., 1996. Magnetic fabrics and sources of magnetic susceptibility in lower crustal and upper mantle rocks from Hess Deep. In Mével, C., Gillis, K.M., Allan, J.F., and Meyer, P.S. (Eds.), Proc. ODP, Sci. Results, 147: College Station, TX (Ocean Drilling Program), 393–403.

Roeder, P.L., and Emslie, R.F., 1970. Olivine liquid equilibrium. Contrib. Mineral. Petrol., 29:275–289.

Sarda, P., and Graham, D., 1990. Mid-ocean ridge popping rocks: implications for degassing at ridge crests. Earth Planet. Sci. Lett., 97:268–289.

Schilling, J.-G., 1973. Iceland mantle plume: geochemical study of Reykjanes Ridge. Nature, 242:565–571.

Schouten, H., Klitgord, K.D., and Whitehead, J.A., 1985. Segmentation of mid-ocean ridges. Nature, 317:225–229.

Seyler, M., and Bonatti, E., 1997. Regional-scale melt-rock interaction in lherzolitic mantle in the Romanche Fracture Zone (Atlantic Ocean). Earth Planet. Sci. Lett., 146:273–287.

Shearer, P., and Orcutt, J.A., 1986. Compressional- and shear-wave anisotropy in the oceanic lithosphere—the Ngendei seismic refraction experiment. Geophys. J. R. Astron. Soc., 87:967–1003.

Shen, Y., and Forsyth, D.W., 1995. Geochemical constraints on initial and final depths of melting beneath mid-ocean ridges. J. Geophys. Res., 100:2211–2237.

Silantyev, S.A., Dmitriev, L.V., Bazylev, B.A., Casey, J.F., Bougault, H., Levsky, L.K., Belyatsky, B.V, and Ovchinikova, G.V., 1996. An examination of genetic conformity between co-existing basalt, gabbro and residual peridotites from 15°20'N fracture zone, central Atlantic: evidence from isotope composition of Sr, Nd, and Pb. InterRidge Newsl., 4:18–21.

Sisson, T.W., and Grove, T.L., 1993a. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib. Mineral. Petrol., 113:143–166.

————, 1993b. Temperatures and H2O contents of low MgO high-alumina basalts. Contrib. Mineral. Petrol., 113:167–184.

Sleep, N.H., 1975. Formation of oceanic crust: some thermal constraints. J. Geophys. Res., 80:4037–4042.

Smewing, J.D., 1981. Mixing characteristics and compositional differences in mantle-derived melts beneath spreading axes: evidence from cyclically layered rocks in the ophiolite of North Oman. J. Geophys. Res., 86:2645–2659.

Snow, J.E., and Dick, H.J.B., 1995. Pervasive magnesium loss by marine weathering of perdotite. Geochim. Cosmochim. Acta, 59:4219–4235.

Sobolev, A.V., Dmitriev, L.V., Tsamerian, O.P., Simonov, V.A., Skolotnev, S.G., and Basilev, B.A., 1992a. On the structure and origin of geochemical anomaly in basalts from Mid-Atlantic Ridge between 12 and 18°N. Dok. Akad. Nauk USSR, 326:541–546. (in Russian)

Sobolev, A.V., Tsamerian, O.P., and Dmitriev, L.V., 1992b. The geochemical anomaly in Mid-Atlantic Ridge basalts between 12°–18°N: geochemical structure and origin. Proc. 29th Int. Geol. Cong., 29:58.

Sobolov, A.V., Tsamerian, G.P., Dmitriev, L.V., and Basilev, B., 1992c. The correlation between the mineralogy of basalt and the associated peridotites: the data from the MAR between 8°–18°N. Eos, Trans. Am. Geophys. Union, 73:584.

Sparks, D.W., and Parmentier, E.M., 1991. Melt extraction from the mantle beneath spreading centers. Earth Planet. Sci. Lett., 105:368–377.

————, 1993. The structure of three-dimensional convection beneath oceanic spreading centres. Geophys. J. Int., 112:81–91.

————, 1994. The generation and migration of partial melt beneath oceanic spreading centers. In Ryan, M.P. (Ed.), Magmatic Systems, San Diego CA (Academic Press, Inc.), 55–76.

Sparks, D.W., Parmentier, E.M., and Phipps Morgan, J., 1993. Three-dimensional mantle convection beneath a segmented spreading center: implications for along-axis variations in crustal thickness and gravity. J. Geophys. Res., 98:21977–21995.

Spiegelman, M., 1993. Physics of melt extraction: theory, implications and applications. Philos. Trans. R. Soc. London, Ser. A., 342:23–41.

Spiegelman, M., and McKenzie, D., 1987. Simple 2-D models for melt extraction at mid-ocean ridges and island arcs. Earth Planet. Sci. Lett., 83:137–152.

Spudich, P., and Orcutt, J., 1980. Petrology and porosity of an oceanic crustal site: results from wave form modeling of seismic refraction data. J. Geophys. Res., 85:1409–1433.

Staudacher, T., Sarda, P., Richardson, S.H., Allegré, C.J., Sagna, I., and Dimitriev, L.V., 1989. Noble gases in basalt glasses from a Mid-Atlantic Ridge topographic high at 14°N: geodynamic consequences. Earth Planet. Sci. Lett., 96:119–133.

Stolper, E., 1980. A phase diagram for mid-ocean ridge basalts: preliminary results and implications for petrogenesis. Contrib. Mineral. Petrol., 78:13–27.

Su, W., and Buck, W.R., 1993. Buoyancy effects on mantle flow under mid-ocean ridges. J. Geophys. Res., 98:12191–12205.

Thompson, J.B., Jr., 1959. Local equilibrium in metasomatic processes. Res. Geochem., 1:427–457.

Tolstoy, M.A., Harding, J.A., and Orcutt, J.A., 1992. Crustal thickness at the Mid-Atlantic Ridge: bull's eye gravity anomalies and focused accretion. Science, 262:726–729.

Toomey, D.R., Wilcock, W.S.D., Solomon, S.C., Hammond, W.C., and Orcutt, J.A., 1998. Mantle seismic structure beneath the MELT region of the East Pacific Rise from P- and S-wave tomography. Science, 280:1224–1227.

Tucholke, B.E., Lin, J., Kleinrock, M.C., Tivey, M.A., Reed, T.B., Goff, J., and Jaroslow, G., 1997. Segmentation and crustal structure of the western Mid-Atlantic Ridge flank, 25°25'–27°10'N and 0–29 m.y. J. Geophys. Res., 102:10203–10223.

Turcotte, D.L., and Phipps Morgan, J., 1992. The physics of melt migration and mantle flow beneath a mid-ocean ridge. In Phipps Morgan, J., Blackman D., and Sinton, J. (Eds.), Mantle Flow and Melt Generation at Mid-Ocean Ridges. Geophys. Monogr., 71:155–182.

Vera, E.E., Mutter, J.C., Buhl, P., Orcutt, J.A., Harding, A.J., Kappus, M.E., Detrick, R.S., and Brocher, T.M., 1990. The structure of 0- to 0.2-m.y.-old oceanic crust at 9°N on the East Pacific Rise from expanded spread profiles. J. Geophys. Res., 95:15529–15556.

Wager, L.R., and Brown, G.M., 1968. Layered Igneous Rocks: Edinburgh (Oliver and Boyd).

Waldron, D.A., Clowes, R.M., and White, D.J., 1990. Seismic structure of the subducting oceanic plate off western Canada. In Green, A.G. (Ed.), Studies of Laterally Heterogeneous Structures Using Seismic Refraction and Reflection Data. Pap.—Geol. Surv. Can., 105–113.

White, R.S., 1979. Oceanic upper crustal structure from variable angle seismic reflection-refraction profiles. Geophys. J. R. Astron. Soc., 57:683–726.

White, R.S., McKenzie, D., and O'Nions, R.K., 1992. Oceanic crustal thickness from seismic measurements and rare earth element inversions. J. Geophys. Res., 97:19683–19715.

Whitehead, J.A., Dick, H.J.B., and Shouten, H., 1984. A mechanism for magmatic accretion under spreading centers. Nature, 312:146–148.

Whitmarsh, R.B., and Calvert, A.J., 1986. Crustal structure of Atlantic fracture zones. Geophys. J. R. Astron. Soc., 85:107–138.

Whitmarsh, R.B., Ginzburg, A., and Searle, R.C., 1982. The structure and origin of the Azores-Biscay Rise, northeast Atlantic Ocean. Geophys. J. R. Astron. Soc., 70:79–108.

Whitmarsh, R.B., Miles, P.R., and Mauffret, A., 1990. The ocean-continent boundary off the western continental margin of Iberia, I. Crustal structure at 40°30'N. Geophys. J. Int., 103:509–531.

Xia, C., Casey, J.F., Silantiev, S., and Dmitriev, L., 1991. Geochemical structure of the 14°N mantle source anomaly along the Mid-Atlantic Ridge and geochemical changes across the 15°20'N Fracture Zone. Eos, Trans. Am. Geophys. Union, 72:518.

Xia, C., Casey, J.F., Silantiev, S., Dmitriev, L., and Bougault, H., 1992. Geochemical variations between 12 to 16°N, Mid-Atlantic Ridge: a region with high degrees of partial melting yet magma starved? Eos, Trans. Am. Geophys. Union, 73:553.

Next Section | Table of Contents