171A Scientific Prospectus

REFERENCES

Bangs, N.L., Shipley, T.H., and Moore, G.F., 1996. Elevated fluid pressure and fault zone dilation inferred from seismic models of the Northern Barbados Ridge décollement. J. Geophys. Res., 101:627-642.

Bangs, N.L.B., Westbrook, G.K., Ladd, J.W., and Buhl, P., 1990. Seismic velocities from the Barbados Ridge Complex: indications of high pore-fluid pressures in an accretionary wedge. J. Geophys. Res., 95:8767-8782.

Bangs, N.L., and Westbrook, G.K., 1991. Seismic modeling of the décollement zone at the base of the Barbados Ridge Complex. J. Geophys. Res., 96:3853-3866.

Bekins, B.A., McCaffrey, A.M., and Driess, S.J., 1995. Modeling the origin of low-chloride pore waters at a modern accretionary complex. Water Resources Res., 31:3205-3215.

Bray, C.J., and Karig, D.E., 1985. Porosity of sediments in accretionary prisms, and some implications for dewatering processes. J. Geophys. Res., 90:768-778.

Brown, K.M., Bekins, B., Clennell, B., Dewhurst, D., Westbrook, G., 1994. Heterogeneous hydrofracture development and accretionary fault dynamics. Geology, 22:259-262.

Cochrane, G.R., Moore, J.C., MacKay, M.E., and Moore, G.F., 1994. Velocity and inferred porosity model of the Oregon accretionary prism from multichannel seismic reflection data: implications on sediment dewatering and overpressure. J. Geophys. Res., 99:7033-7043.

Fisher, A.T., and Hounslow, M., 1990. Heat flow through the toe of the Barbados accretionary complex. In Moore, J. C., Mascle, A., et al., Proc. ODP, Sci. Results., 110: College Station, TX, (Ocean Drilling Program), 345-363.

Fisher, A.T., Zwart, G., and ODP Leg 156 Scientific Party, 1996. The relationship between permeability and effective stress along a plate-boundary fault, Barbados accretionary complex. Geology, 24: 307-310.

Gardner, G.H.F., Gardner, L.W., and Gregory, A.R., 1974. Formation velocity and density: the diagnostic basis for stratigraphic traps. Geophysics, 39: 770-780.

Gassmann, R., 1951. Elastic waves through a packing of spheres. Geophysics, 16: 673-685.

Jarrard, R.D., Mackay, M.E., Westbrook, G.K., and Screaton, E.J., 1995. Log-based porosity of ODP sites on the Cascadia accretionary prism. In Carson, B., Westbrook, G. K., Musgrave, R. J., and Suess, J. (Eds.), Proc. ODP Sci. Results, 146 (Pt. 1): College Station, TX (Ocean Drilling Program), 313-335.

Karig, D.E., 1986. Physical properties and mechanical state of accreted sediments in the Nankai Trough, Southwest Japan Arc. In Moore, J. C. (Ed.), Structural Fabrics in Deep Sea Drilling Project Cores from Forearcs, Geol. Soc. Am. Mem., 66: 117-133.

Kastner, M., Elderfield, H., and Martin, J.B., 1991. Fluids in convergent margins: what do we know about their composition, origin, role in diagenesis, and importance for oceanic chemical fluxes? Philos. Trans. R. Soc. London A, 335:275-288.

Moore, G.F., and Shipley, T.H., 1993. Character of the décollement in the Leg 131 drilling area, Nankai Trough. In Hill, I.A., Taira, A., Firth, J.V., et al., Proc. ODP Sci. Results, 131: College Station, TX, (Ocean Drilling Program), 73-82.

Shipboard Scientific Party, 1995. Site 948. In Shipley, T., Ogawa, Y., and Blum, P., et al., Proc. ODP, Init. Repts., 156: College Station, TX (Ocean Drilling Program), 87-192.

Shipley, T.H., Stoffa, P.L., and Dean, D.F., 1990. Underthrust sediments, fluid migration paths and mud volcanoes associated with the accretionary wedge off Costa Rica: Middle America Trench. J. Geophys. Res., 95: 8743-8752.

Shipley, T.H., Moore, G.F., Bangs, N.L., Moore, J.C., Stoffa, P.L., 1994. Seismically inferred dilatancy distribution, northern Barbados Ridge décollement: implications for fluid migration and fault strength. Geology, 22: 411-414.

Tobin, H.J., Moore, J.C., and Moore, G.F., 1994. Fluid pressure in the frontal thrust of the Oregon accretionary prism: experimental constraints. Geology, 22: 979-982.

To 171A Site time estimates

To 171A Table of Contents

Publications Home

ODP Home