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ABSTRACT

Leg 178 will drill eight sites off the Pacific margin of the Antarctic Peninsula to provide a high-

resolution record of Antarctic continental climate over the past 6-10 m.y., and a direct check on the

presumed glacio-eustatic origin of global sea-level change over the same period. Moreover, it is an

essential preliminary to the more difficult task of extracting the complete Cenozoic record of

Antarctic glacial history by drilling the East Antarctic margin. 

The glacial prograded wedges of the Antarctic Peninsula margin are particularly well developed, and

their glacial record is well preserved because of the margin's tectonic youth, high snowfall, small-

reservoir proximal glacial regime, and underlying 2-D geometry. Associated terrigenous

hemipelagic drifts on the adjacent continental rise contain a continuous, high-resolution record of

continental climate that will act as a reference section for the topset and foreset records of the shelf.

International collaboration through the Antarctic Offshore Acoustic Stratigraphy initiative has made

extensive data sets available for the planning of a drilling campaign. Site locations strike a balance

between the greater density and diversity of data in the northeast and the greater time separation

between tectonic and glacial control of sedimentation in the southwest. The sites aim to sample

glacial sedimentation over the past 10 m.y. in three related depositional environments (shelf topsets

and foresets and rise drifts). This conservative, overlapping sampling strategy allows comparison of

depositional environments before attempting to investigate the longer and more complex history of

East Antarctic glaciation. 

Drilling in Palmer Deep, a glacially overdeepened basin on the inner shelf, will sample an expanded

Holocene section. Paleoproductivity in Palmer Deep seems representative of regional climate, so

this section can be used to compare decadal- and millennial-scale regional climate variability with

that of low-latitude regions and with that recorded in ice cores. 
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INTRODUCTION

The Antarctic Ice Sheet is both a major system component (involved in global deep- and bottom-

water formation and sea-level change) and a source of "noise" in the oxygen isotopic record that

limits the value of this record to other studies through most of the Cenozoic. The proposal on which

this leg is based is one of four or five linked proposals intended to extract Antarctic Cenozoic glacial

history from the sediments of its continental margin. Leg 178 will drill eight sites (Figs. 1-3) on the

continental margin of the Antarctic Peninsula. Sites include a transect of the outer continental shelf

and complementary holes in a hemipelagic drift on the continental rise, both extending back 6-10

m.y., and a shallow hole on the inner continental shelf that will provide an ultra-high resolution

Holocene record. 

At present, the history of the Antarctic Ice Sheet is unknown. It has been inferred from low-latitude

proxy data such as oxygen isotopic measurements on deep-ocean benthic foraminifers and the

record of eustatic sea-level change adduced from sediments on low-latitude margins (Miller et al.,

1987; Haq et al., 1987). However, these inferences are ambiguous and in disagreement (Sahagian

and Watts, 1991; Barker, 1992), which not only leaves the history unresolved, but also limits the

credibility and usefulness of both sets of proxy data. For example, there is dispute over whether the

principal increases in Antarctic ice volume, which affect the benthic isotopic record, occurred at

about 35 Ma, at 16-13 Ma, or only after 3 Ma. Within these various hypotheses, assumptions that

may be incorrect have been made about the constancy of equatorial surface temperatures or the

high-latitude surface origins and temperatures of intermediate to deep waters at low latitudes.

Similarly, changes in grounded ice volume provide the only generally accepted repeatable, rapid-

acting cause for global eustatic sea-level change, yet the timing and amplitudes of sea-level change

adduced from low-latitude margin sediments are disputed, and changes also occur at times when

there is no independent evidence for the existence of substantial volumes of grounded ice on

Antarctica or elsewhere. Further, the isotopic and sea-level estimates of grounded ice volume

disagree substantially with each other at both long and short periods through most of the Cenozoic.

Onshore Antarctic evidence of glacial history is sparse and is also presently controversial.
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Argument continues as to how stable the Antarctic Ice Sheet has been (Webb and Harwood, 1991;

Denton et al., 1993).

Deep and intermediate waters of the Southern Ocean have generally been corrosive to the carbonate

microfossil tests that are almost exclusively used in isotopic analysis. Therefore, the problems in

using distal proxy data to make indirect estimates of ice volume will persist. Some progress may be

made by detailed analysis at very high resolution of carbonate sections from a large number of

lower latitude sites, but the solutions will remain ambiguous. The Antarctic margin sediments hold

a direct record of Antarctic ice-sheet fluctuation that can help resolve the ambiguities of ice-volume

change and clear the way for more useful interpretation of isotopic and sea-level data in the future.

The ultimate aim of the four or five linked Antarctic Offshore Acoustic Stratigraphy

(ANTOSTRAT) drilling proposals is to provide an estimate of variations in size of the Antarctic Ice

Sheet through the Cenozoic. This will necessarily include warmer periods when the ice sheet was

much smaller than today, reaching the margin only occasionally and in a few places, with

significant fluvial sediment transport and deposition elsewhere. It is therefore necessary for drilling

to sample both the East and West Antarctic glacial history, and to distinguish a small interior ice

sheet, barely reaching the margin, from a much larger ice sheet with a large coastal ice budget. This

means making use of numerical models to suggest what might have been the patterns of past

glaciation and using the modeling results or other relevant information to select drilling locations in

different regions. For example, Figure 4 (from Huybrechts, 1993) shows a glaciological model of

ice sheets that cover only parts of the continent during warmer conditions. It is clear that some

regions will be more sensitive to particular stages of ice-sheet volume change than others, and that

no single region will provide a complete history. The models provide the means of combining data

from different regions of the Antarctic margin into a complete history of ice-sheet development. 
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BACKGROUND 

Glacial Sediment Transport

Great strides have been made in recent years in collaborative interpretation of seismic data from the

Antarctic margin (through the ANTOSTRAT initiative:  see Cooper et al., 1994; 1995). Together

with the simplicity of the modern Antarctic glacial regime (compared with that of the Arctic), these

data have led to the rapid emergence and application of a unifying model of glacial sediment

transport and deposition (Alley et al., 1989; Larter and Barker, 1989; Bartek et al., 1991; Cooper et

al., 1991; Kuvaas and Kristoffersen, 1991). Briefly, almost all ice transport to the ice-sheet margins

takes place within broad, rapidly moving ice streams. Rapid flow is enabled by low-friction basal

conditions, the main source of which is the existence of an overpressured and undercompacted,

unsorted, shearing basal till. The necessary shear ensures that ice transport is accompanied by till

transport, and virtually all of the transported till is melted out/dropped/deposited very close to the

grounding line, where the ice sheet becomes ice shelf before calving into icebergs and drifting north.

The ice stream, therefore, essentially erodes and transports inshore of the grounding line and

deposits directly offshore in a high-latitude analogue of the low-latitude subaerial

erosion/shoreline/marine sedimentation system. Further, the grounding line advances and retreats

under the influence of upstream ice provision and basal sediment supply—and sea-level

change—that are all related to climate. The very large prograded sediment wedges beneath the

Antarctic margin were developed during a series of glacial maxima, when the ice sheet was

grounded all the way to the continental shelf edge (Fig. 5).

The glacial sedimentation regime has other characteristics. Progradation is usually focussed into

broad "trough-mouth fans" opposite the main ice streams, and the shelf is overdeepened (generally

to 300-600 m depth, but in places much deeper) and inward-sloping. Continental slopes are often

steep, and in places turbidity-current transport of the unstable component of slope deposition (with

down-current deposition of suspended fines) has produced large hemipelagic sediment drifts on the

continental rise (Kuvaas and Leitchenkov, 1992; Rebesco et al., 1996; Fig. 6). Sediment supply to

the slope and rise is highly cyclic, with large quantities of unsorted diamicton deposited during

glacial maxima and very little deposited during interglacial periods.
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Three depositional environments are recognized:  shelf topsets and slope foresets of the prograded

wedge, and proximal hemipelagic drifts on the continental rise. Of these, the shelf record is

potentially the least continuous. There, sediment is preserved mainly as a result of slow subsidence

from cooling and from flexural response to the topset and foreset load, and the sediment is prone to

re-erosion during the next glacial advance. The topsets tend to mark only the major changes in

glacial history, so that the more continuous foreset record is an essential complement. The proximal

rise drifts may not always be present and are as yet sparsely sampled, but potentially contain an

excellent record, closely related to that of the upper slope foresets from which they are derived.

Existing seismic data and drill sites from around Antarctica have demonstrated the coarse (but not

as yet the fine) scale climate record in continental rise sediments and the likely climatic sensitivity of

margin wedge geometry (Barker, 1995), and have revealed the partial nature of the shelf topset

record (Hayes, Frakes, et al., 1975; Barron, Larsen, et al., 1989).

The continental shelf is an area of high biogenic productivity during interglacial periods. Although

long-term sediment preservation on the shelf is limited because of the erosional effects of grounded

ice sheets during subsequent glacials, biogenic interbeds will be preserved within sequence groups

composed mainly of thick glacial diamicton topsets and foresets. In addition, glacially eroded deeps

can preserve expanded Holocene sections that may be continuous and essentially biogenic, provided

the ice-sheet grounding line is sufficiently remote that ice-rafted debris is minor or absent and the

section is sufficiently protected from bottom current action. Such sections can provide a record of

decadal and millennial variability that can be compared with records from low latitudes and the ice

sheet itself. This environment is available on the inner shelf of the Antarctic Peninsula (Domack and

McClennen, 1996) and will be sampled during Leg 178.

Regional Features of Antarctic Glaciation

Different parts of Antarctica have had different glacial histories. The present Antarctic ice sheet

comprises an East Antarctic component grounded largely above present sea level and a West

Antarctic component grounded largely below sea level. Marine-based (West Antarctic) ice sheets

are considered less stable. There is evidence from around Antarctica that, although East and West
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Antarctic climates were coupled in the past, changing approximately in phase, the climate of West

Antarctica (including the Antarctic Peninsula) has varied around a consistently warmer baseline.

Although East Antarctic glaciation extends to 35 Ma or earlier, West Antarctic glaciation probably

began more recently, during generally colder times. Further, there is strong evidence that Northern

Hemisphere glaciation has been the main contributor to global sea-level change over the past 0.8

m.y. and probably 2.5 m.y., and has therefore partially driven the more subdued changes in

Antarctic glaciation. Another significant local control may have been the Transantarctic Mountains,

which probably attained much of their present elevation and influence on the East Antarctic ice sheet

during late Cenozoic time.

Antarctic Peninsula Region

Tectonic Influences On Sedimentation

The tectonic setting of the Antarctic Peninsula is unusual, but straightforward. Subduction of the

Pacific ocean floor that had occurred for 150 m.y. or more ended with collision of a (Phoenix-

Antarctic) ridge crest at the trench, earliest (~50 Ma) in the southwest and latest (6-3 Ma) in the

northeast. In the far northeast, the surviving South Shetland Trench and extensional Bransfield Strait

form a modern complexity that does not concern us here. Generally, the effects of collision have

included  (1) some terrigenous sedimentation in and beyond the ridge crest in the last 2-3 m.y.

before collision and (2) uplift of the margin soon after collision followed by slow subsidence,

leading to a hiatus in terrigenous sediment supply to the rise in that particular collision segment for a

few million years after collision. Collisions occurred well before the onset of glaciation in the

southwest, but not in the northeast. In the northeast, this provides a useful constraint on the

maximum age of glacial sediments (they overlie ocean floor of known age), but also threatens

interference between tectonic and glacial events. For the older glacial history it is prudent to avoid

the northeast area of the margin.

Antarctic Peninsula Glacial Sedimentation

The ultimate aim of the four or five linked ANTOSTRAT drilling proposals is to provide an

estimate of the variation in size of the Antarctic Ice Sheet through the Cenozoic. Each

ANTOSTRAT proposal is focussed on the particular contributions its region might make toward
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understanding Antarctic glacial history. A single region does not offer the best opportunities for

drilling in all respects. The particular value of drilling on the Antarctic Peninsula is made clear

below, in terms of the main influences on glacial sedimentation.

1. All Antarctic margins are extensional or effectively so, in a thermal and flexural sense, but most

are old. Age governs thermal subsidence and rigidity, which controls response to erosion and

deposition and to cyclic ice loading. The Antarctic Peninsula behaves as a young passive

margin, having subducted a ridge crest (50 Ma in the southwest to only 6-3 Ma in the northeast;

Barker, 1982; Larter and Barker, 1991a). The margin undergoes steady thermal subsidence,

which means better preservation of topset beds of the prograded wedge than at an older, colder

margin, and a more local isostatic response to sediment load.

2. Snow accumulation varies with temperature and is greatest around the continental edge and

particularly along the Antarctic Peninsula, which is warmer than East Antarctica (Drewry and

Morris, 1992). Snow accumulation governs the required rates of ice transport, hence basal

sediment transport. Greater accumulation means an expanded sediment record. Warmer ice

means (probably) faster ice flow, which also contributes to a rapid response to climate and an

expanded sediment record.

3. The extent of the ice drainage basin affects the speed of response to climate change and adds the

complexity of a distal to a proximal signal (which allows the possibility of seeing the effects of

a small, purely inland ice sheet at the coast during less-glaciated periods). The Antarctic

Peninsula is a narrow strip of interior upland, dissected by fjords and bordered by a broad

continental shelf. It therefore has a low-reservoir, high-throughput glacial regime with only a

proximal source, so it is both simple and highly responsive to climate change.

4. Subice geology (resistance to erosion) is a significant variable, to the extent that a till base

facilitates ice streaming. The Peninsula interior is 2000 m high, composed largely of Andean-

type plutonic and volcanic rocks. Before ridge subduction, the Pacific margin was a well-

developed forearc terrain on which the glacial regime has superposed an extensive prograded
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wedge (Larter and Barker, 1989, 1991b; Anderson et al., 1990; Larter and Cunningham, 1993;

Bart and Anderson, 1995). The topography and geology of the Peninsula vary very little along

strike, which simplifies models of erosional and depositional response to climate change. Short

cores on the outer shelf show diamicton beneath a thin cover of Holocene hemipelagic mud

(Pope and Anderson, 1992; Pudsey et al., 1994).

Onshore evidence of Eocene glaciation on the South Shetland Islands (northern Antarctic

Peninsula) has been published (see Birkenmajer, 1992), but this conflicts with other evidence of

regional climate. Generally, it is considered that the Antarctic Peninsula can provide a high-

resolution record of glaciation back to perhaps 10 Ma. To go back farther could involve

entanglement with the tectonics of ridge-crest collision, making this a problem rather than an asset.

However, because of the Antarctic Peninsula's more northerly position, its glacial history is shorter

than East Antarctica's. The record before 10 Ma may be largely nonglacial, or may reveal a stage of

valley glaciation lacking regular ice-sheet extension to the continental shelf edge.

SCIENTIFIC OBJECTIVES

The principal drilling objectives of Leg 178 are to

• extract and compare high-resolution records of the past 10 Ma of continental glaciation

contained in topset beds (paleoshelf) of the glacial prograded wedge at the Antarctic Peninsula

Pacific margin, in foreset beds (paleoslope) of the same sequence groups, and in a hemipelagic

sediment drift on the continental rise;

• compile an optimal high-resolution history of grounded ice-volume fluctuation and compare it

with low-latitude records of sea-level change and isotopic estimates of ice-volume change over

the past 10 Ma;

• assess the main controls on sediment transport and deposition during glacial intervals and use

the insights gained to optimize investigation of the longer, more complicated East Antarctic

record of glaciation and glacio-eustatic sea-level change; and 
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• extract an ultra-high-resolution Holocene record from a protected basin on the inner continental

shelf for comparison with similar records from the ice sheets and lower-latitude sites to

investigate decadal- and millennial-scale climatic variation.

PROPOSED SITES AND DEPOSITIONAL FEATURES

The prime sites for Leg 178 are

• a linked proximal/distal pair of reference sites on a rise drift (APRIS-01A and 02A); 

• a four-site transect of the margin prograded wedge of Lobe 1 (APSHE-01A to 04A);

• an interlobe site to examine the "preglacial" S3 (APSHE-05A); and

• an ultra-high-resolution Holocene inner shelf site in Palmer Deep (APSHE-13A).

Figures 2 and 3 respectively show the bathymetry and the distribution of the main depositional

features along the Antarctic Peninsula margin. On the shelf, a mid-shelf high running continuously

along the margin and discontinuous mid-shelf basins inside it are relics of subduction and ridge

crest collision (Fig. 3). The volcanics and plutonics of the central spine of the Peninsula have been

dissected by glacial erosion. At present, the ice cover on the Peninsula is thin (a few hundred meters

at most), and the grounding line lies at the heads of the numerous overdeepened fjords. Around

glacial maxima, the ice was grounded over most or all of the continental shelf, and shallow troughs

draining the interior transported basal till to four depositional lobes, L1-4 (trough-mouth fans), that

have extended the shelf edge.

Sites APRIS-01A and 02A 

The present slope of the depositional lobes L1 to 4 (Fig. 7) is steep (15°-20°) and is assumed to be

at the limit of stability. A GLORIA survey of the northeastern area of the rise (Tomlinson et al.,

1992; Rebesco et al., 1996) and deep-tow boomer examination of the upper slope (Vanneste and

Larter 1995) show small-scale dissection of the upper slope and a dendritic pattern of channels at

the base of slope, which feed major channels heading northwestward toward the lower continental
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rise (Figs. 2, 3 and 6). Between the major channels lie large depositional mounds rising more than 1

km above the channel floors. These mounds are thought to have formed as the result of ambient

bottom-current entrainment of suspended fines from the many small-scale turbidity currents that

"drain" the continental slope via the channels (Rebesco et al., 1994, 1996; McGinnis and Hayes,

1994, 1995). The mounds are fine-grained hemipelagic sediment drifts. Those within the GLORIA

survey area (Drifts D1-D4; Fig. 3) are clearly separated from the margin by tributary channels, and

the larger drifts to the southwest are probably the same. It is doubtful if direct deposition of

turbidites has contributed to the drift deposits, except at their distal extremity. Seismic reflection

profiles show a remarkable similarity in reflection character of the separate drifts over distances of

400 km or more.

The drifts are likely to provide a fine-grained equivalent of the slope foreset record of glacial history,

provided that the residence time of the unstable component of upper slope deposition is short

compared with the glacial cycle, and individual slope turbidites are small. Recent gravity coring on

Drift 7 (Camerlenghi et al., in press) confirms these conditions:  a biogenic mud at the core top (rich

in diatoms and radiolaria with benthic and planktonic foraminifers) overlies barren, laminated

glacial silty clays above another biogenic mud (interglacial Stage 5). Average sedimentation rate is

3.5 to 5 cm/k.y. All the evidence indicates that the drifts provide a viable high-resolution record of

glacial history. Leg 178 will drill one drift at two sites (Sites APRIS-01A and 02A on Drift 7). Site

APRIS-01A is at the southeast end of the drift, proximal to the margin, and Site APRIS-02A is a

distal offset site designed to penetrate deeper in the section, where it is thinner, in the event that silica

diagenesis at the prime site eliminates biostratigraphic control (there is a silica diagenetic bottom

simulating reflector [BSR] at about 600 m within Drift 7).

In summary, these seven sites will sample the 6-10 m.y. of Antarctic Peninsula glacial history in all

three primary depositional environments (shelf topsets, slope foresets, rise drift). The rise sites

(Sites APRIS-01A and 02A) will provide a high-resolution record that will serve as a reference for

the shelf sites (Sites APSHE-01A to 05A), allowing correlation of the major changes in prograding

wedge geometry and assisting in the interpretation of all three records in terms of climate change.

The result will be a high-resolution record of glaciation through a period when sea-level change has
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been (for Antarctica) imposed from outside (i.e., Northern Hemisphere glaciation over the past 0.8

and/or 2.5 m.y.), to a preceding regime in which the main contribution to sea-level change was

from Antarctic glaciation itself, and when the isotopic signal of insolation change was of lower

amplitude and shorter period (Tiedemann et al., 1994; Shackleton et al., 1995). A major global sea-

level drop occurred at 10 Ma, and there is controversy over the climate of the warm Pliocene in the

Antarctic and over the depth of the preceding late Miocene cool period. Through most of the past 10

m.y., the contribution of ice-volume change to the isotopic signal is unknown. This will be the first

Antarctic high-resolution record of any kind. In addition, the core recovered from Leg 178 will

greatly improve our understanding of the potential and limitations of the main glacial depositional

environments.

Sites APSHE-01A to 04A

Figure 7 shows a section through Lobe 1, along our prime drilling transect that consists of proposed

Sites APSHE-01A to 04A. Seismic sequence groups S1 and S2 (Larter and Barker, 1989, 1991b)

are considered to have been produced by ice-stream transport during ice-sheet grounding to the

shelf edge over the past 5 m.y. or so. Glacial deposition is largely confined to the lobes and is

discontinuous between them, so strict correlation between sequence groups cannot be made.

However, sequence group geometries virtually identical to S1 and S2 are seen within Lobes 2 to 4.

S1 is moderately progradational, with minor versions of the features that dominate and distinguish

S2—the erosional truncation of foresets at their upper boundary. The main aim of the drilling

transect is to date the major components of this characteristic geometry:  the beginning of S2, the

beginning and end of the episode of truncation with which it ended, and the assumed continuous

foreset deposition in S1. It should also be possible to characterize quite fully the lateral coherence

and degree of discontinuity of topset deposition within both S1 and S2.

Site APSHE-05A

Beneath sequence group S2 is sequence group S3 (Fig. 7) that, except in the northeast, is clearly

post-collisional, but is different from S1 and S2 as it is much more continuous along the margin, is

parallel-bedded down-dip (lacking a clear paleoshelf break), and either pinches out or is truncated at

its down-dip end. In many of its characteristics, it resembles a sequence found elsewhere beneath
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the glacial prograded wedge (the Type IIA of Cooper et al., 1991). We have called S3 "pre-glacial,"

but that is a shorthand term as it most probably reflects an earlier or transitional stage of glacial

deposition before ice sheets regularly extended to the shelf break. This sequence will be sampled at

proposed Site APSHE-05A, between Lobes 3 and 4 (Fig. 3), where it is more accessible and

clearly separated from collisional tectonics. Sequence group S4 is pre- and syncollisional, and in

general its erosionally truncated upper boundary reflects collision-related uplift. If the S3/S4

boundary were to be sampled in the northeast, it would show pronounced collision-related

unconformity; but here there is the possibility that S3 sediment represents a period sufficiently long

that its basal sediments are more clearly pre-glacial and conformable on S4. The full depth of

penetration at Site APSHE-05A is uncertain.

Site APSHE-13A 

Proposed Site APSHE-13A (Proposal 502 by E. Domack) is located in the Palmer Deep on the

inner continental shelf directly south of Anvers Island (Leventer et al., in press). It lies in one of

three linked basins that contain an ultra-high-resolution Holocene record of Antarctic Peninsula

climate. Short piston cores from this basin show a pronounced 200-300 yr periodicity in

paleoproductivity that is also seen in some Antarctic Peninsula fjords. This region is particularly

interesting because of its current apparent sensitivity to climate change. The expanded, presumed

pelagic section may be compared with recently-acquired records from low and intermediate

latitudes (Santa Barbara Basin, Saanich Inlet, Cariaco Basin) and ice-core records from Greenland

and Antarctica, to examine decadal and millennial variability on a global scale. This record may

provide opportunities to examine magnetic secular variation and, for the inshore environment, the

time variability of the 14C "reservoir effect," which is large but uncertain for waters south of the

Polar Front.
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DRILLING STRATEGY

All sites have an alternate in case pack ice covers the primary sites (although this is most unlikely).

In addition, lower priority sites (each with an alternate) have been selected in the mid-shelf basin

where pre-collision sediments occur (APSHE-11A), and in the South Shetland trench where a

high-resolution paleoclimate record is preserved within a trench turbidite succession (APSST-01A).

Also, the Planning Committee (PCOM) recommended that an originally-specified Plio-Pleistocene

paleoclimate site in Bransfield Strait (APBRS-01A) be removed from the drilling plan because of a

shortage of time. In fact, only the primary sites listed above will be drilled as planned if the leg

proceeds without massive disruption by ice.

Drilling on the rise will involve double advanced hydraulic piston corer (APC) and extended core

barrel (XCB) coring at the proximal site (to about 700 m), followed possibly by rotary core barrel

(RCB) coring to 1450 mbsf, or most probably by offset to the distal APC/XCB site where the same

full section is accessible within 600 m. The depth limit of drilling at Site APRIS-01A will depend

on the effects of silica diagenesis on the biostratigraphy and on time constraints. These sites are in

fine-grained alternating biosiliceous and barren muds and mudstones. The 50-m ultra-high-

resolution site (APSHE-13A), assumed to be essentially a diatom ooze, will be sampled by triple

APC. The other shelf sites pose problems, in that the unsorted diamictons are unsuitable for

APC/XCB sampling. Therefore, all five sites (that are between 500 and 800 m deep) will probably

(in the absence of advice to the contrary) be rotary-drilled from the seabed down. Recovery will be

reduced because of their lithology (with the possible exception of Site APSHE-05A), but we shall

try for as complete a section as possible.
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LOGGING

We plan to log shelf sites APSHE-01A to 05A and rise sites APRIS-01A and 02A with the

following tool strings:  the Triple Combination (litho-density, porosity, resistivity, and natural

gamma tools); Formation MicroScanner (FMS)-Sonic (resistivity imaging, sonic velocity, and

natural gamma tools); and Geological High-sensitivity Magnetometer (GHMT; magnetic field,

susceptibility, and natural gamma tools). Also, we plan a vertical incidence vertical seismic profile

(VSP) survey, using the well seismic tool (WST; downhole geophone), at one of the rise sites and

at one or more of the shelf sites.

Thus, an extensive logging program is planned. Briefly, geophysical and geochemical logs will

provide lithological information to complement core data and to help offset possible low recovery

on the shelf; the FMS images can be used to investigate fine-scale bedding and fabric, including

orientation; the GHMT will provide a magnetic stratigraphy; and the WST and synthetic

seismograms will be used to correlate hole depths with travel times on the seismic section. The

good quality logging results obtained on previous Antarctic Ocean Drilling Program (ODP) legs

(113 and 119) in similar sediments, bode well for successful logging on this leg.

UNDERWAY GEOPHYSICS

Standard ODP practice is to collect 3.5- and 12-kHz echo-sounder data on approach to each site. In

addition, long magnetic and 3.5-kHz profiles will be acquired on the transits from Punta Arenas to

the Antarctic Peninsula and from there to Cape Town.



Leg 178
Scientific Prospectus

Page 17

SAMPLING PLAN

For Leg 178, almost all sampling will probably be accomplished during the cruise; no postcruise

sample party is currently planned. Most sites consist of a single hole, where fairly standard

sampling is envisaged. At other sites, which will be double (Site APRIS-01A) and triple (Site

APSHE-13A) cored, a composite section will be constructed for each site and then a sampling

strategy will be developed. Nonstandard sampling at some of the sites might include high-

resolution whole-round sampling for physical properties and geochemical studies, U-channel

sampling for paleomagnetism, and microbiological sampling.

All sampling to be conducted on Leg 178 must be approved by the sampling allocation committee

(SAC), consisting of the Co-chiefs, Staff Scientist, and Curatorial Representative. Sampling plans

are subject to modification depending upon the actual material recovered and collaborations that

may evolve between scientists during the leg.
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FIGURE CAPTIONS

Figure 1.  Map of the Antarctic Peninsula showing the location of the proposed drill sites and ship

track from Punta Arenas (Chile) to Cape Town (S. Africa).

Figure 2.  Bathymetric map of the Antarctic Peninsula margin, showing primary sites APRIS-01A to

02A, APSHE-01A to 05A, and APSHE-13A as circles, and alternate and lower priority sites as

squares (R3 and R4 are Sites APRIS-03A and 04A, respectively; S6 to S12 are Sites APSHE-06A to

12A, respectively; and T1 and T2 are Sites APSST-01A and 02A, respectively).

Figure 3.  Pacific margin of the Antarctic Peninsula (revised from Barker, 1995) showing

sedimentary features of the continental shelf, slope, and rise, including drifts D1-8 and Lobes L1-4,

with proposed sites for ODP Leg 178. Large spots mark primary sites (APRIS-01A, 02A; APSHE-

01A to 05A and APSHE-013A); smaller spots mark alternate and lower priority sites (labelled as in

Figure 2).

Figure 4. Graph and maps of ice-sheet growth, showing ice-sheet size and location at mean sea-level

temperatures 5, 9, 10, 15, 19, and 20 Kelvin (K) above present. The maps indicate where margin

sedimentation might be sensitive to particular stages of ice-sheet growth. Antarctic Peninsula glaciation

appears to have developed during the last 5-9 K of cooling (from Huybrechts, 1993).

Figure 5.  Seismic sequence model of a single glacial cycle (Larter and Barker, 1989, 1991b).

Unsorted diamicton is deposited on the upper slope during glacial (GS) maxima, and on the shelf

during retreat. Pelagic and hemipelagic deposition takes place on shelf and slope during interglacials

(IGS). With re-advance, some or all shelf topsets may be eroded.

Figure 6.  Cartoon of processes leading to construction and maintenance of a hemipelagic drift deposit

along the Antarctic Peninsula margin (from Rebesco et al, in press), showing a section through a shelf

progradational lobe and adjacent continental rise during a glacial maximum when an ice sheet

grounded to the shelf edge is transporting unsorted basal till to the upper slope. Small-scale slumps on
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the uppermost slope become debris flows. Farther downslope, these become turbidity currents which

flow via tributaries on the uppermost rise into the main channel running between the drifts towards the

abyssal plain. Suspended fines are entrained in ambient bottom currents and deposited down-current.

Subsequent turbidity-current flow in the channels, and slope instability on the steeper drift slopes

sweep those recent deposits away, leaving a permanent sediment increment only on the gentle slope of

the drifts.

Figure 7.  Schematic dip section of Lobe 1 (revised from Barker, 1995), showing (long arrows)

primary Sites APSHE-01A to 04A and sequence groups S1-4 (from Larter and Barker, 1989, 1991b)

on the outer shelf. Shorter arrow shows lower priority Site APSHE-10A on the flank of the mid-shelf

high. 

 

Figure 8.  Locations of all available multichannel seismic (MCS) and single-channel seismic (SCS)

profiles on the Antarctic Peninsula margin (from UK, Italian, U.S.A., Brazilian, and German cruises

and from Spanish, Chinese, Polish, and Japanese data in S. Shetlands/Bransfield Strait area). Boxes

(Figs. 9, 10, and 11) are areas where almost all primary and alternate sites are located.

Figure 9.  Track chart in Drifts D7 and D6 area (Fig. 3) showing primary (large circles) and alternate

(small circles) sites. Each drift has a proximal and distal site, with Drift D7 as the prime target.

Figure 10.  Track chart in Lobe 1 area (Fig. 3) showing primary (large circles), alternate (small

circles) sites, and lower priority sites (squares).

Figure 11.  Track chart in Lobe 3 area (Fig. 3) showing primary (large circles), alternate (small

circles) sites, and lower priority sites (squares).

Figure 12.  Track chart showing MCS profiles in the South Shetland Trench area (Figs. 2 and 3),

where alternate Sites APSST-01A (large triangle) and APSST-02A (small triangle) are located.
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Table 1. Leg 178 Time Estimates for Primary Sites

Site Location Water Projected Operations Plan Transit Drilling Logging Total
Name Lat/Long Depth (days) (days) (days) On-site

Punta Arenas Transit 890.8 nmi from beginning port to Site APRIS-1A @ 10.5 kt 3.5

APRIS-01A 67° 34.0' S 3200 APC to 200 mbsf, APC/XCB to 400 mbsf, RCB to 700 mbsf. Log  
76° 57.8' W Depth objective may be obtained by XCB, then no RCB hole needed. 7.4 1.5 8.9

Transit Transit  49.1 nmi from APRIS-01A to APRIS-02A @ 10.5 kt 0.2

APRIS-02A 66° 59.9' S 3850 APC/XCB to 400 mbsf, RCB to 550 mbsf. Log  
78° 29.2' W Depth objective may be obtained by XCB, then no RCB hole needed. 5.9 1.4 7.3

Transit Transit 186.7 nmi from APRIS-02A to APSHE-05A @ 10.5 kt 0.7

APSHE-05A 66° 23.6' S 600 No APC/XCB. Spud with RCB and core to 785 mbsf. Log  
70° 45.4' W 3.7 1.3 5.0

Transit Transit 186.2 nmi from APSHE-05A to APSHE-13A @ 10.5 kt 0.7

APSHE-13A 64° 51.7' S 1040 Triple APC to 50 mbsf.  
64° 12.5' W 0.8 0.8

Transit Transit 65.6 nmi from APSHE-13A to APSHE-04A @ 10.5 kt 0.3

APSHE-04A 63° 56.5' S 490 No APC/XCB. Spud with RCB and core to 785 mbsf. Log  
65° 34.6' W 3.6 1.2 4.8

Transit Transit 5.0 nmi from APSHE-04A to APSHE-03A @ 10.5 kt 0.0

APSHE-03A 63° 52.9' S 440 No APC/XCB. Spud with RCB and core to 505 mbsf. Log  
65° 42.7' W 2.1 1.1 3.1

Transit DP Offset 1.2 nmi from APSHE-03A to APSHE-02A @ 1 kt 0.0

APSHE-02A 63° 52.0' S 440 No APC/XCB. Spud with RCB and core to 560 mbsf. Log  
65° 44.7' W 2.3 1.1 3.5

Transit Transit 4.9 nmi from APSHE-02A to APSHE-01A @ 10.5 kt 0.0

APSHE-01A 63° 48.2' S 450 No APC/XCB. Spud with RCB and core to 505 mbsf. Log  
65° 51.5' W 2.1 1.1 3.1

Cape Town Transit 3609.6 nmi from Site APSHE-01A to ending port @ 10.5 kt 14.3

Total 19.9 27.8 8.6 36.4

    TOTAL DAYS: 56.3



Table 2. Leg 178 Time Estimates for Alternate Sites

Site Latitude Longitude Water Depth *Penetration Related Primary Site Drilling Logging Total
Name (m) (mbsf) *(days) (days) On-site

APRIS-03A 66° 48.3' S 75° 56.8' W 2960 1150 APRIS-01A 10.7 1.5 12.2
APRIS-04A 65° 55.0' S 77° 13.5' W 3900 700 APRIS-02A 7.8 1.4 9.2
APRIS-05A 64° 35.1' S 69° 24.3' W 2850 1320 APRIS-01A 14.5 1.5 16.0
APRIS-06A 64° 13.7' S 70° 50.4' W 3500 800 APRIS-02A 8.6 1.4 10.0

APSHE-06A 66° 30.0' S 70° 25.8' W 600 505 APSHE-05A 3.4 1.3 4.7
APSHE-07A 65° 54.4' S 70° 30.0' W 420 675 APSHE-01A 4.0 1.1 5.1
APSHE-08A 65° 55.0' S 70° 28.5' W 405 450 APSHE-02A 2.1 1.1 3.2
APSHE-09A 65° 56.0' S 70° 25.8' W 390 450 APSHE-03A 2.1 1.1 3.2
APSHE-10A 64° 00.0' S 65° 27.9' W 510 650 APSHE-05A 3.9 1.3 5.2
APSHE-11A 64° 28.3' S 65° 35.3' W 530 620 3.7 1.3 5.0
APSHE-12A 66° 46.5' S 69° 33.3' W 375 620 alternate for APSHE-11A 3.7 1.3 5.0
APSHE-15A 64° 56.7' S 64° 18.9' W 1425 250 APSHE-13A 1.6 1.6

APSST-01A 62° 07.3' S 62° 40.0' W 4715 630 8.0 1.5 9.5
APSST-02A 62° 13.0' S 62° 53.0' W 4705 720 8.0 1.5 9.5

*assuming penetration to the maximum approved depth
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PRIMARY SITES

Site: APRIS-01A

Priority: 1 
Position: 67˚34.00´S, 76˚57.78´W 
Water Depth:  3200 m
Sediment Thickness:  >2000 m 
Approved Maximum Penetration:  1450 mbsf
Seismic Coverage:  Explora Lines IT92-109 and AI95-130

Objectives:  The objectives of Site APRIS-01A are to:

1. Obtain a high-resolution history of Antarctic Peninsula glaciation for the last 6-10 m.y. from
the long continuous sediment succession of the hemipelagic sediment drifts.

2. Determine the onset of drift formation by sampling the base of Unit M4.

Drilling Program: Double APC to 200 m and XCB (or RCB if necessary) to 700 m, then either
RCB from 700 m to base of M4 at same site OR single APC and XCB to base M4 (at ~550 m) at
offset site (APRIS-02A), where upper section is thinner. Offset is required if stratigraphic control
seriously degrades below the silica diagenetic BSR at about 600 m. Alternate sites:  APRIS-03A
and 05A.

Logging and Downhole Operations: Standard suites IPLT-DLT and FMS-sonic, plus GHMT.
Vertical incidence VSP.

Nature of Rock Anticipated: Alternating (interglacial) biosiliceous clay and (glacial) laminated
barren gray clay, becoming claystone downhole.
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Site:   APRIS-02A

Priority:  1
Position:  66˚59.91´S, 78˚29.16´W 
Water Depth:  3850 m
Sediment Thickness:  1500 m
Approved Maximum Penetration:  700 m
Seismic Coverage:  Explora Line AI95-135A

Objectives:  The objectives of Site APRIS-02A are to: 

1. Sample the deeper part of the stratigraphic section not drilled at Site APRIS-01A.

2. Obtain a high-resolution history of Antarctic Peninsula glaciation for the last 6-10 m.y.

3. Determine the onset of drift formation by sampling the base of Unit M4.

Drilling Program:  Single APC and XCB to the base of Unit M4 (at ~550 m) where upper
section is thinner. A RCB hole may be necessary if the XCB system fails to reach the depth
objective. This site is offset by ~50 km from main Site APRIS-01A. Offset will be required if
stratigraphic control is seriously degraded below silica diagenetic BSR at 600 m at main site.
Alternate Sites:  APRIS-04A and 06A.

Logging and Downhole Operations:  Standard suites IPLT-DLT and FMS-sonic, plus GHMT.
Vertical incidence VSP.

Nature of Rock Anticipated:  Alternating (interglacial) biosiliceous clay and (glacial) laminated
barren gray clay, becoming claystone downhole.
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Site:  APSHE-01A

Priority:  1
Position:  63˚48.16´S, 65˚51.46´W 
Water Depth:  450 m
Sediment Thickness:  >2000 m
Approved Maximum Penetration:  560 mbsf 
Seismic Coverage:  Explora Line AI95-152 and Discovery Line AMG845-08

Objectives:  The objectives of Site APSHE-01A are to: 

1. Identify and date glacial/interglacial transitions in the youngest S1 foreset sequence.

2. Examine foreset lithologies and compare them with the rise drift.

Drilling Program:  Single RCB hole to 505 mbsf. Alternate site is APSHE-07A.

Logging and Downhole Operations:  Standard suites IPLT-DLT and FMS-sonic, plus GHMT 

Nature of Rock Anticipated:  Diamicton (mainly proximal glacial marine) with thin biosiliceous
interbeds.
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Site: APSHE-02A

Priority:  1
Position: 63˚52.03´S, 65˚44.73´W 
Water Depth:  440 m
Sediment Thickness:  >2000 m 
Approved Maximum Penetration:  650 mbsf 
Seismic Coverage:  Explora line AI95-152 and Discovery line AMG845-08

Objectives:  The objectives of Site APSHE-02A are to: 

1. Identify and date the main changes in wedge geometry during progradation of the glacial
wedge (conformable S1/S2 boundary).

2. Examine topset (S1) and foreset (S2) lithologies, and compare with rise drift.

Drilling Program:  Single RCB hole to 560 mbsf. Alternate site is APSHE-08A.

Logging and Downhole Operations:  Standard suites IPLT-DLT and FMS-sonic, plus GHMT.
Vertical incidence VSP.

Nature of Rock Anticipated: Diamicton (alternations of lodgement till in topsets and proximal
glacial marine) with thin biosiliceous interbeds.

Note:  See seismic line for APSHE-01A
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Site: APSHE-03A

Priority:  1
Position:  63˚52.93´S, 65˚42.69´W 
Water Depth:  440 m
Sediment Thickness:  >2000 m 
Approved Maximum Penetration:  600 mbsf
Seismic Coverage:  Explora Line AI95-152 and Discovery Line AMG845-08

Objectives:  The objectives of Site APSHE-03A are to: 

1. Identify and date the main changes in wedge geometry during the progradation of the glacial
wedge (onset of erosional S1/S2 boundary).

2. Examine topset (S1) and foreset (S2) lithologies and compare with the rise drift.

Drilling Program:  Single RCB hole to 505 mbsf. Alternate site is APSHE-09A.

Logging and Downhole Operations:  Standard suites IPLT-DLT and FMS-sonic, plus GHMT.

Nature of Rock Anticipated:  Diamicton (alternations of lodgement till in topsets and proximal
glacial marine in foresets) with thin biosiliceous interbeds.

Note:  See seismic line for APSHE-01A
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Site:  APSHE-04A

Priority:  1
Position:  63˚56.52´S, 65˚34.62´W
Water Depth:  490 m
Sediment Thickness:  >2000 m 
Approved Maximum Penetration: 1050 mbsf 
Seismic Coverage:  Explora Line AI95-152 and Discovery Line AMG845-08

Objectives:  The objectives of Site APSHE-04A are to: 

1. Identify and date the main changes in wedge geometry during progradation of the glacial
wedge including the "pre-glacial"/glacial transition (conformable boundary between the
oldest part of S2 and the youngest "pre-glacial" S3).

2. Examine topset (S1 and S2) and"pre-glacial" (S3) lithologies and compare with rise drift.

Drilling Program:  Single RCB hole to 785 m.

Logging and Downhole Operations:  Standard suites IPLT-DLT and FMS-sonic, plus GHMT.

Nature of Rock Anticipated:  Diamicton (alternations of lodgement till in topsets and proximal
glacial marine) with thin biosiliceous interbeds to base of S2, then uncertain lithology (glacial
marine diamicton or biosiliceous hemipelagic).

Note:  See seismic line for APSHE-01A
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Site:  APSHE-05A

Priority:  1
Position:  66˚23.57´S, 70˚45.40´W 
Water Depth:  600 m
Sediment Thickness:  >2000 m
Approved Maximum Penetration:  785 mbsf 
Seismic Coverage:  Polar Duke Lines PD88-B and PD88-04

Objectives:  The objectives of Site APSHE-05A are to: 

1. Examine "pre-glacial” (S3) lithologies in detail and test the synchroneity of the conformable
S3/S2 boundary along the margin.

2. Sample the near-conformable (probably tectonic) S3/S4 boundary.

3. Test hypotheses of the "pre-glacial" nature of S3 and of the uplift/subsidence origin of the
S4/S3 boundary.

Drilling Program:  Single RCB hole to 785 mbsf. Alternate sites are APSHE-06A and 10A.

Logging and Downhole Operations:  Standard suites IPLT-DLT and FMS-sonic, plus GHMT.
Vertical incidence VSP.

Nature of Rock Anticipated:  Diamicton (lodgement till and proximal glacial marine) with thin
biosiliceous interbeds to base of S2 (i.e., top ~150 m), then uncertain (glacial marine diamicton or
biosiliceous hemipelagic) in S3 to base of hole.
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Site:  APSHE-13A

Priority:  1
Position:  64˚51.72´S, 64˚12.51´W 
Water Depth:  1040 m
Sediment Thickness:  ~60 m
Approved Maximum Penetration:  70 mbsf 
Seismic Coverage: On site (located on Core 30) at SP 519 of Line AI97-H218G; 375 m off the
site, SP 490 of Line AI97-H218G intersects SP 629 of Line AI97-H223G (GI gun source); 400 m
off the site SP 490 of Line AI97-H218G intersects SP 930 of Line AI97-H230 (water gun
source). Site also located on PD92-2 Huntec D-TB (deep-tow boomer) 540J survey line.

Objectives:  The objectives of Site APSHE-13A are to: 

1. Obtain a Holocene ultra-high-resolution record of paleoproductivity in an inner shelf basin.

2. Examine decadal-millennial variability to compare with low-latitude and ice core records.

Drilling Program:  Quadruple APC to 50 m or base of biogenic sediments, if deeper. Alternate
site is APSHE-15A.

Logging and Downhole Operations:  None

Nature of Rock Anticipated:  Pelagic/hemipelagic siliceous ooze and mud, with <1% ice-rafted
component (??diamicton at base).
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ALTERNATE SITES

Site:  APRIS-03A

Priority:  2 (alternate to APRIS-01A)
Position:  66˚48.33'S, 75˚56.78'W 
Water Depth:  2960 m
Sediment Thickness:  >2000 m 
Approved Maximum Penetration:  1150 mbsf
Seismic Coverage:  Line IT92-109 SP 3840; intersecting lines are AI95-138A SP 1120 and
AI97-243 SP 4767.

Objectives:  The objectives of Site APRIS-03A are to:

1. Obtain a high-resolution history of Antarctic Peninsula glaciation for the last 6-10 m.y.

2. Determine the onset of drift formation by sampling the base of Unit M4.

Drilling Program: Double APC until refusal (about 200 m), continue with XCB until refusal
(about 800 m), and then either RCB from 750 m to base of target section at the same site or single
APC and XCB to base of target section at Site APRIS-04. APRIS-04 is offset about 110 km from
APRIS-03 and is located where the upper part of the section is thinner and the base of the target
section is at only about 700 mbsf. Offset of the site is required if the stratigraphic control seriously
degrades below the silica diagenetic BSR at about 670 mbsf at Site APRIS-03A.

Logging and Downhole Operations: Standard suites IPLT-DLT and FMS-sonic, plus GHMT.

Nature of Rock Anticipated:  Alternating (interglacial) biosiliceous clay and (glacial) laminated
barren gray clay, becoming claystone downhole.
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Site:  APRIS-04A

Priority:  2 (alternate to APRIS-02A)
Position:  65˚55.04'S, 77˚13.55'W 
Water Depth:  3900 m
Sediment Thickness:  >2000 m 
Approved Maximum Penetration:  700 mbsf
Seismic Coverage:  Line AI95-136A SP 5550

Objectives:  The objectives of Site APRIS-04A are to:

1. Sample the deeper part of the stratigraphic section not drilled at Site APRIS-03A.

2. Obtain a high-resolution history of Antarctic Peninsula glaciation for the last 6-10 m.y.

3. Determine the onset of drift formation by sampling the base of Unit M4.

Drilling Program:  Double APC until refusal (about 200 m) then XCB. The site is offset by ~110
km from main Site APRIS-03A. Offset required if stratigraphic control seriously degraded below
silica diagenetic BSR at ~670 m at main site.

Logging and Downhole Operations: Standard suites IPLT-DLT and FMS-sonic, plus GHMT.

Nature of Rock Anticipated: Alternating (interglacial) biosiliceous clay and (glacial) laminated
barren gray clay, becoming claystone downhole.
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Site:  APRIS-05A

Priority:  2 (alternate to APRIS-01A)
Position:  64˚35.06'S, 69˚24.26'W
Water Depth:  2850 m
Sediment Thickness:  >2000 m 
Approved Maximum Penetration:  1320 mbsf
Seismic Coverage:  Line IT92-114 SP 2250; Lines intersect at AI97-235A SP 9300 and AI97-
236 SP 291

Objectives:  The objectives of Site APRIS-05A are to:

1. Obtain a high-resolution history of Antarctic Peninsula glaciation for the last 6-10 m.y.

2. Determine the onset of drift formation by sampling the base of Unit M4.

Drilling Program:  Double APC until refusal (about 200 m), continue with XCB until refusal
(about 800 m), and then either RCB from 750 m to base of target section at the same site or single
APC and XCB to base of target section at Site APRIS-06A. Site APRIS-06A is offset about 90
km from APRIS-05A and is located where the upper part of the section is thinner and the base of
the target section is at only about 800 mbsf. Offset of the site is required if the stratigraphic control
seriously degrades below the silica diagenetic BSR at about 590 mbsf at Site APRIS-05A.

Logging and Downhole Operations:  Standard suites IPLT-DLT and FMS-sonic, plus GHMT.

Nature of Rock Anticipated:  Alternating (interglacial) biosiliceous clay and (glacial) laminated
barren gray clay, becoming claystone downhole.
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Site:  APRIS-06A

Priority:  2 (alternate to APRIS-02A)
Position:  64˚13.72'S, 70˚50.45'W  
Water Depth:  3500 m
Sediment Thickness:  >2000 m 
Approved Maximum Penetration:  800 mbsf
Seismic Coverage:  Line IT92-114 SP 550

Objectives:  The objectives of Site APRIS-06A are to:

1. Sample the deeper part of the stratigraphic section not drilled at Site APRIS-03A.

2. Obtain a high-resolution history of Antarctic Peninsula glaciation for the last 6-10 m.y.

3. Determine the onset of drift formation by sampling the base of Unit M4.

Drilling Program: Double APC until refusal (about 200 m) then XCB. The site is offset by ~90
km from main site, Site APRIS-01A. Offset required if stratigraphic control seriously degraded
below silica diagenetic BSR at ~590 m at main site.

Logging and Downhole Operations: Standard suites IPLT-DLT and FMS-sonic, plus GHMT.

Nature of Rock Anticipated: Alternating (interglacial) biosiliceous clay and (glacial) laminated
barren gray clay, becoming claystone downhole.
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Site:  APSHE-06A

Priority:  2 (alternate to APSHE-05A)
Position:  66˚30.05'S, 70˚25.8'W 
Water Depth:  600 m
Sediment Thickness:  >2000 m
Approved Maximum Penetration:  505 mbsf
Seismic Coverage:  Site located on Line PD88-04 (0500/002). Approximately 3 km from the site,
this Line PD88-04 intersects Line BAS878-021 at SP 2430.

Objectives:  The objectives of Site APSHE-06A are to: 

1. Examine "pre-glacial" (S3) lithologies in detail and test the synchroneity of the conformable
S3/S2 boundary along the margin.

2. Sample the near-conformable (probably tectonic) S3/S4 boundary.

3. Test hypotheses of the "pre-glacial" nature of S3 and of the uplift/subsidence origin of the
S4/S3 boundary.

Drilling Program:  Single RCB hole.

Logging and Downhole Operations:  Standard suites IPLT-DLT and FMS-sonic, plus GHMT. 

Nature of Rock Anticipated: Diamicton (lodgement till and proximal glacial marine) with thin
biosiliceous interbeds to base of S2 (i.e., top ~150 m), then uncertain (glacial marine diamicton or
biosiliceous hemipelagic) from S3 to base of hole.

Note:  See seismic line for APSHE-05A
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Site:  APSHE-07A

Priority:  2 (alternate to APSHE-01A)
Position:  65˚54.36'S, 70˚30.00'W
Water Depth:  420 m
Sediment Thickness:  >2000 m
Approved Maximum Penetration:  675 mbsf
Seismic Coverage:  Site located at SP 693 of Line AI95-140; 3175 m off the site, SP 820 of Line
AI95-140 intersects SP 610 of Line AI95-142; Line AMG878-19 is nearby.

Objectives:  The objectives of Site APSHE-07A are to: 

1. Identify and date glacial/intergalcial transitions in the youngest S1 foreset sequence.

2. Examine foreset lithologies and compare them with the rise drift.

Drilling Program:  Single RCB hole.

Logging and Downhole Operations:  Standard suites IPLT-DLT and FMS-sonic, plus GHMT. 

Nature of Rock Anticipated:  Diamicton (mainly proximal glacial marine) with thin biosiliceous
interbeds.
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Site:  APSHE-08A

Priority:  2 (alternate to APSHE-02A)
Position:  65˚54.98'S, 70˚28.46'W
Water Depth:  405 m
Sediment Thickness:  >2000 m
Approved Maximum Penetration:  450 mbsf
Seismic Coverage:  Site located at SP 758 of Line AI95-140; 1550 m off the site, SP 820 of Line
AI95-140 intersects SP 610 of Line AI95-142; Line AMG878-19 is nearby.

Objectives:  The objectives of Site APSHE-08A are to: 

1. Identify and date the main changes in wedge geometry during progradation of the glacial
wedge (conformable S1/S2 boundary).

2. Examine topset (S1) and foreset (S2) lithologies and compare with rise drift.

Drilling Program:  Single RCB hole.

Logging and Downhole Operations:  Standard suites IPLT-DLT and FMS-sonic, plus GHMT.

Nature of Rock Anticipated: Diamicton (alternations of lodgement till in topsets and proximal
glacial marine) with thin biosiliceous interbeds.

Note:  See seismic line for APSHE-07A



Leg 178
Scientific Prospectus
Page 64

Site:  APSHE-09A

Priority:  2 (alternate to APSHE-03A)
Position:  65˚56.01'S, 70˚25.80'W
Water Depth:  390 m
Sediment Thickness:  >2000 m
Approved Maximum Penetration:  450 mbsf
Seismic Coverage:  Site located at SP 868 of Line AI95-140; 1200 m off the site, SP 820 of Line
AI95-140 intersects SP 610 of Line AI95-142; Line AMG878-19 is nearby.

Objectives:  The objectives of Site APSHE-09A are to: 

1. Identify and date the main changes in wedge geometry during progradation of the glacial
wedge (onset of erosional S1/S2 boundary).

2. Examine topset (S1) and foreset (S2) lithologies and compare with rise drift.

Drilling Program:  Single RCB hole.

Logging and Downhole Operations:  Standard suites IPLT-DLT and FMS-sonic, plus GHMT.

Nature of Rock Anticipated: Diamicton (alternations of lodgement till in topsets and proximal
glacial marine) with thin biosiliceous interbeds.

Note:  See seismic line for APSHE-07A
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Site:   APSHE-10A

Priority:  2 (alternate to APSHE-05A)
Position:  63˚59.97'S, 65˚27.92'W
Water Depth:  510 m
Sediment Thickness:  >2000 m
Approved Maximum Penetration:  650 mbsf
Seismic Coverage:  Site located at SP 1707 of Line AI95-152; also on Line AMG 845-08; 7675
m off the site, SP 1400 of Line AI95-152 intersects SP 1500 of Line AMG 845-10. Intersect on
site AI97-H231 SP 3491.

Objectives:  The objectives of Site APSHE-10A are to: 

1. Examine "pre-glacial" (S3) lithologies in detail and test the synchroneity of the conformable
S3/S2 boundary along the margin.

2. Sample the near-conformable (probably tectonic) S3/S4 boundary.

3. Test hypotheses of the "pre-glacial" nature of S3 and of the uplift/subsidence origin of the
S4/S3 boundary.

Drilling Program:  Single RCB hole.

Logging and Downhole Operations:  Standard suites IPLT-DLT and FMS-sonic, plus GHMT. 

Nature of Rock Anticipated:  Diamicton intercalated with thin hemipelagic layers down to S1/S3
boundary. Hemipelagic or terrigenous sediments down to S3/S4 boundary. Volcaniclastics below
S3/S4 boundary.

Note:  See seismic line for APSHE-01A





Site:  APSHE-11A

Priority:  2
Position:  64˚28.32'S, 65˚35.27'W
Water Depth:  530 m
Sediment Thickness:  >1000 m
Approved Maximum Penetration:  620 mbsf
Seismic Coverage:  Site located on Line AI95-149 SP 1520; Line AMG845-03 SP 1290; intersect
Line BAS878-18 SP 3380; Intersect at 1900 m off site Ewing SAP1.

Objectives:  The objectives of Site APSHE-11A are to: 

1. Obtain a record of "pre-glacial" sedimentation in the inner shelf basin.

2. Provide constraints on the history of vertical motion associated with ridge-crest collision.

Drilling Program:  Single RCB hole. The alternate site is APSHE-12A.

Logging and Downhole Operations: Standard suites IPLT-DLT and FMS-sonic, plus GHMT. 

Nature of Rock Anticipated: Diamicton intercalated with thin hemipelagic layers down to
IS1/IS2 boundary. Volcaniclastics sandstones and mudstones below IS1/IS2 boundary.
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Site:  APSHE-12A

Priority:  2 (alternate to APSHE-11A)
Position:  66˚46.55'S, 69˚33.35'W
Water Depth:  375 m
Sediment Thickness:  >1000 m
Approved Maximum Penetration:  620 mbsf
Seismic Coverage:  Line PD88-04 (0830/002). Intersection:  Line IT92-111 SP 1125.

Objectives:  The objectives of Site APSHE-12A are to: 

1. Obtain a record of "pre-glacial" sedimentation in the inner shelf basin.

2. Provide constraints on the history of vertical motion associated with ridge-crest collision.

Drilling Program:  Single RCB hole.

Logging and Downhole Operations:  Standard suites IPLT-DLT and FMS-sonic, plus GHMT. 

Nature of Rock Anticipated:  Diamicton intercalated with thin hemipelagic layers down to
IS1/IS2 boundary. Volcaniclastic sandstones and mudstones below IS1/IS2 boundary.

Note:  See seismic line for APSHE-05A
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Site:  APSHE-15A

Priority:  2 (alternate to APSHE-13A)
Position:  64˚56.68'S, 64˚18.92'W
Water Depth:  1445 m
Sediment Thickness:  ~200 m
Approved Maximum Penetration:  250 mbsf 
Seismic Coverage:  On Site: Lines AI97-H219G SP 1962 and AI97-H221 SP 800 (G.I. Gun
source). Intersection on site:  Line AI97-H228 SP 698 (water gun source). PD92-2 Huntec D-TB
540J survey.

Objectives:  The objectives of Site APSHE-15A are to: 

1. Obtain a Holocene ultra-high-resolution record of paleoproductivity in an inner shelf basin.

2. Examine decadal-millennial variability to compare with low-latitude and ice-core records.

3. Test the hypothesis that Palmer Deep was a subglacial lake during the latest episodes of ice
grounding on the Antarctic Peninsula continental shelf.

Drilling Program:  Quadruple APC coring to base of transparent unit. XCB coring into
the lower unit.

Logging and Downhole Operations:  None

Nature of Rock Anticipated:  Pelagic/hemipelagic siliceous ooze and mud, with <1% ice-rafted
component (??diamicton at base).





Leg 178
Scientific Prospectus
Page 72

Site:  APSST-01A

Priority:  2
Position:  62˚07.30'S, 62˚40.00'W
Water Depth:  4715 m
Sediment Thickness:  ~900 m
Approved Maximum Penetration:  630 mbsf 
Seismic Coverage:  Line HESP92-11 SP 39300, part of coarse grid of MCS lines (cruise
ANT-92).

Objectives:  The objectives of Site APSST-01A are to: 

1. Obtain a high-resolution Pliocene-Quaternary stratigraphy  of cyclic sedimentation in the
South Shetland Trench.

2. Date glacial events and paleoceanographic processes.

Drilling Program:  Double APC until refusal (about 200 m) then XCB. The alternate site
is APSST-02A.

Logging and Downhole Operations:  Standard suites IPLT-DLT and FMS-sonic, plus GHMT.

Nature of Rock Anticipated:  Turbidites.
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Site:  APSST-02A

Priority:  2 (alternate to APSST-01A)
Position:  62˚13.00'S, 62˚53.00'W
Water Depth:  4705 m
Sediment Thickness:  ~1500 m
Approved Maximum Penetration:  720 mbsf
Seismic Coverage:  Line HESP92-11 SP 38900, part of coarse grid of MCS lines (cruise
ANT-92).

Objectives:  The objectives of Site APSST-02A are to: 

1. Obtain a high-resolution Pliocene-Quaternary stratigraphy of cyclic sedimentation in the
South Shetland Trench.

2. Time glacial events and paleoceanographic processes.

Drilling Program:  Double APC until refusal (about 200 m) then XCB.

Logging and Downhole Operations:  Standard suites IPLT-DLT and FMS-sonic, plus GHMT.

Nature of Rock Anticipated:  Turbidites.

Note:  See seismic line for APSST-01A
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