The SWD experiment will be conducted at the NERO site to develop seismic-while-drilling capability for the Ocean Drilling Program (ODP). Vertical seismic profiles have proven extremely useful over the history of ODP in correlating borehole properties with regional seismic properties. Normally they are carried out with a borehole seismometer and airgun shots fired on the surface from a second ship. Typically they take 6-12 hr of drill ship time depending on the depth of the hole, sampling interval, etc. In an SWD/VSP, the seismic source is the drill bit and the sound is received on geophones at the seafloor. No additional drill ship time is necessary to acquire an SWD/VSP. The SWD technology was developed for land boreholes using surface geophones and has had considerable success. We propose here to extend the SWD capability to deep-ocean boreholes. For the NERO experiment SWD/VSPs and traditional VSPs will be compared for data quality and utility. If successful, the technology will be transitioned to ODP for routine use.
As a test effort, two OBSs and a drill-pipe pilot sensor on Leg 179 will be utilized. OBSs will be deployed, recovered, and redeployed at the NERO site, with initial results and procedures analyzed on board. The OBSs can be deployed and recovered using the ship's workboat. Five additional GEOMAR Ocean Bottom Hydrophones (OBHs; Flueh and Bialas, 1996) will also be deployed around the drill site and used during the SWD experiment.
Initial proof-of-concept of SWD will consist of three objectives:
2. A demonstration of the recording of drill bit direct arrivals (P- and S-waves) in the OBS data. Analysis will consist of producing filtered cross-correlation functions (between the OBS and pilot sensor data) at depth intervals of less than 5 m over a range of bit depths sufficient to observe P and S-wave moveout. Filtering would include polarization filtering, bandpass filtering, and multichannel spatial filtering so that direct arrival signals can be distinguished from other interference.
3. A demonstration of the recording of P and S reflections. Analysis will consist of wavefield
separation of direct and converted energy and isolation of primary bit-generated reflections.
The work necessary to establish a SWD capability falls into three categories: (1) acquisition of the OBS data during drilling; (2) acquisition of the pilot sensor data on the rig floor during the drilling operations; and (3) reduction of the OBS and pilot sensor data to a VSP format for seismic analysis.
The USGS-OBSs both have three-component inertial sensors and hydrophones and can record autonomously on the seafloor for about one week. The operations necessary to do the processing are computing autocorrelations and cross-correlations between selected channels and bandpass and notch filtering. The pilot sensor data will be acquired on the rig floor. Measurement-while-drilling technology (but not SWD) was tested on Leg 156 (Shipley, Ogawa, Blum, et al., 1995).
II. Conventional Vertical Seismic Profiling
About 12 hr will be allotted for the conventional VSP during the logging program following
completion of drilling. The experiment will be conducted in a similar manner to other VSPs on
ODP Legs 118, 123, 148, and 164 (Swift et al., 1991, Bolmer et al., 1992; Swift et al., 1996;
Holbrook et al., 1996). A water gun and an airgun will be floated from the aft port crane and the
Schlumberger three-component tool will be used as the borehole receiver. The tool will be clamped
at 10-m intervals within basement and through the cased sediment section. These data will define
the vertical seismic velocity and attenuation properties within a few tens of meters of the borehole.
The availability of the VSP tool for the leg is critical in evaluating the SWD experiment and to
carry out the oblique seismic experiment (described below).
III. Oblique Seismic Experiment (OSE)
An OSE, using the same single-node three-component borehole seismic tool as the conventional
VSP, will be conducted at the NERO hole on the Ninetyeast Ridge. Goals are to: (1) determine
interval velocities over the depth of the hole for comparison with well logging and core sample
measurements; (2) map lateral heterogeneity at the site with a resolution of ~100 m over ranges up
to 12 km; (3) check for anisotropy within the sediments and volcanic sections; and (4) obtain in
situ measurements of attenuation in the sediments and volcanic section at very-low frequencies
(VLF). These measurements will be necessary to determine the effects of local structure on the
ultra-low frequency (ULF; 0.001-5.0 Hz) observations of ambient noise and teleseismic waves
(earthquakes) to be made at the site as part of ION, and to place the site in a geological and
geophysical context for extrapolation of the ULF results to other regions of the seafloor. Even
though the compressional and shear wavelengths in the ULF band are long with respect to the
heterogeneities and geological structure at the hole, seismometer coupling and ambient noise are
sensitive to sub-wavelength scale features. During ODP Leg 179 on the Ninetyeast Ridge, the
JOIDES Resolution will drill a hole at least 100-200 m into basaltic basement near Site 757
(17°S). The project is a joint effort between U.S. (Project NOSE) and German (Project SINUS)
scientists. Scientists from GEOMAR will conduct a refraction experiment from the Sonne using
seafloor receivers. The drill ship will coordinate with the Sonne and record their shots using the
Schlumberger three-component tool clamped near the bottom of the borehole. The OSE results
will be integrated with an experimental seismic-while-drilling VSP experiment, a conventional
VSP, Schlumberger logs, and physical properties measurements of cores. In contrast to most
'normal' ocean crust, the igneous section on the Ninetyeast Ridge was created at very high magma
extrusion rates that resulted in large, horizontal sheet flows in the upper igneous section. A detailed
study of the seismic response of these sheet flows (converted shear waves, anisotropy, interference
effects, etc.) will constrain models for inferring the rate of magma injection from single-channel
and multichannel seismic reflection surveys elsewhere.
The low cost of this study is made possible by cooperation with a geophysics survey on the Ninetyeast Ridge lead by Dr. Ernst Flueh at GEOMAR, FDR. The JOIDES Resolution and the Sonne will be at the NERO site at the same time in late May, 1998. Both ships are currently scheduled to arrive at the NERO site on May 16th. Dr. Flueh will obtain the bathymetry and sediment thickness data needed to reduce the OSE traveltime data. Dr. Flueh will also deploy 20 30 OBHs and OBSs on the seafloor around the site and will shoot with a tuned airgun array in a pattern of circles and radial lines around the borehole. The data from these instruments will define the seismic structure on a range of scales from a few hundred meters up to a few tens of kilometers. This is essential to characterization of the site because of the strong lateral gradients on these scales inherent in the construction of the volcanic Ninetyeast Ridge. Other seismic studies proposed will complement Dr. Flueh's by providing much greater detail about the basement and sediment structure out to ranges of a few hundred meters.
The two OBSs deployed close to the drill ship will stay on the seafloor and will be used for
recording during the OSE experiment. The type of OBSs used is well suited for recording
converted S-waves as demonstrated during a similar two-ship experiment in conjunction with Leg
164 (Pecher et al., 1997). The three-component Schlumberger seismic tool will be clamped at a
single depth near the bottom of the borehole at about 100 m in basement. GEOMAR scientists
aboard the Sonne will shoot a series of concentric circles around the borehole at ranges of 2, 4, 6,
and 8 km using radar and dithered global positioning system (GPS) navigation to steer. A series of
four straight lines will be shot across the borehole at 45° angles. The Sonne will coordinate
shooting with the JOIDES Resolution. Schlumberger will provide seismic recordings for each
shot using timing synchronized to a GPS clock. GEOMAR will also survey the bathymetry of the
survey region using a multibeam system aboard the Sonne and will collect multichannel reflection
profiles to determine the thickness of sediment above basement and provide control on
compressional velocities. The advantages of this approach are (1) determination of velocity on
vertical scales finer than a conventional VSP and, (2) in the future, the ability to obtain crustal
velocity information without using drill ship time for a conventional VSP.
IV. Pilot Deployment of a Broadband Seismometer
To test a Japanese borehole seismometer installed via the drill ship, temporary deployment of a
broadband wide dynamic range seismometer in the borehole at the NERO site will be conducted.
This will allow testing of the deployment procedures and shock resistance of the instrument. The
characteristics of seismic noises and their level in the borehole will also be examined. This test will
address questions of future installations of borehole seismographs using the drill ship. A
minimum of 12 hr will be allotted for the test. The instrument will be retrieved at the end of the
test.