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ABSTRACT

Leg 185 will drill two deep-water (5674 and 6000 m) sites, one, an existing Ocean Drilling

Program hole (Hole 801C) seaward of the Mariana Trench, and the other, a new site (Site BON-

8A), east of the Izu-Bonin Arc. The primary objectives are to investigate sediment subduction

along this arc-trench system and to characterize the chemical fluxes during alteration of the oceanic

crust. Despite the simple setting and shared subducting plate, there are still clear geochemical

differences between the Marianas and Izu volcanic arc systems. Drilling the crustal inputs

(sediments and basalts) will help test whether geochemical differences in the volcanics are derived

from contrasts in the crustal inputs to the two trenches. Previous drilling has already provided

sections through the sedimentary layer approaching the Mariana Trench. Coring during Leg 185

will provide samples of the remaining input fluxes to the subduction zones:  the altered basaltic

crust at Hole 801C and the sediments and altered basaltic crust at Site BON-8A. The specific

drilling plan is to deepen Hole 801C an additional 250 m (to ~400 m total basement depth) to

penetrate the upper oxidative alteration zone, and to core the entire 470 m sedimentary section at

BON-8A, along with as much basement as possible (to a maximum of 430 m) in the time

allowed. 

One outcome of Leg 185 will be the best existing mass balance of input and output fluxes for

several key tracers (H2O, CO2, U, and Pb) cycled through the subduction factory. These data will

permit a better understanding of the recycling of oceanic crust in the Earth’s mantle, the formation

of continental crust in arc systems and the role of recycled oceanic crust in the generation of mantle

plume magmas. With Hole 801C, which penetrates the world's oldest in situ oceanic crust (~165

Ma), the science party will also provide the first reference site for the structure and composition of

old, fast-spreading oceanic crust to compare with other crustal end-members. Based on the seismic

structure of the East Pacific Rise crust formed at comparable spreading rates (160 mm/yr full rate),

the upper 450 m at Hole 801C may include the entire extrusive section, or layer 2A, of the oceanic

crust. Thus, it is possible that Leg 185 will provide the second example of in situ oceanic crust into

the sheeted dike complex.
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Leg 185 has been targeted to conduct contamination testing and development of a standard

sampling procedure for deep biosphere research. The objective of the contamination test is to

determine the amount of mixing created by the coring process by introducing a tracer (latex beads)

at the mouth of the core barrel as the core is cut.

INTRODUCTION

The State of Crust-Mantle Recycling Science

Subduction zones are the modern sites of continental crust formation and destruction. Continental

growth occurs today by accretion of island arcs and magmatic additions to the crust at arcs. Crustal

destruction occurs by subduction of crustal material (seawater components, marine sediments, and

basaltic crust) at oceanic trenches. Thus, the geochemical and physical evolution of the Earth's

crust and mantle depends in large part on the fate of subducted material at convergent margins

(Armstrong, 1968; Karig and Kay, 1981). The crustal material on the downgoing plate is recycled

to various levels in the subduction zone. Some of it returns to the shallow crust during forearc

accretion and dewatering, some returns to the arc crust via volcanism, some is mixed back into the

deep mantle, and some may even re-emerge in mantle plumes. Despite strong evidence for these

different types of crustal recycling (from seismic imaging, drilling, and isotopic tracers), and

despite the important ramifications for mantle evolution, continent formation, and geochemical

cycles, few studies have focused on quantifying crustal fluxes through subduction zones.

Von Huene and Scholl (1991) calculated a large global flux of subducted sediment—as high as

modern crustal growth rates. Their calculations, however, represent an upper limit on sediment

fluxes into the mantle because some material is cycled back to the upper plate. It is a common

misconception that the sediment contribution to the volcanic arc is trivial (~1%), based on isotopic

mixing arguments, which constrain only the proportion of sediment to the mantle and not the

proportion of the total subducting budget that contributes to the arc. To calculate the latter,

estimates of input fluxes (sediment) and output fluxes (volcanic) are required. Earlier flux balances

by Karig and Kay (1981) for the Marianas suggested that 10% of the sedimentary section

contributes elements to the arc, whereas more recent calculations (Plank and Langmuir, 1993;

Zheng et al., 1994) give values of 30%-50% globally. 
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These estimates, however, have large uncertainties because none of them take into account all of

the crustal outputs. Plank and Langmuir (1993) do not consider underplating or erosion at the

forearc; von Huene and Scholl (1991) do not consider recycling to the arc; and neither study

considers the mobile components dissolved in fluids that are lost to the forearc. It is entirely

possible that the 50%-70% recycling efficiency to the deep mantle suggested by Plank and

Langmuir (1993) could be reduced to 0% for many important element tracers, given the other

shallower outputs that have yet to be taken into account. Clearly, the difference between 70% and

0% recycling would lead to vastly different outcomes for mantle evolution and structure.

The Role of Drilling

The recycling equation involves many variables—aging of the oceanic lithosphere, flow of material

through accretionary prisms, and fluid circulation at active margins—that are linked across a

convergent margin and can be explored in combination through a drilling transect across a margin

(Fig. 1; Scholl et al., 1996). The incoming section of sediment and altered oceanic crust can be

drilled near trenches. The extent of sediment accretion, underplating, erosion, and subduction can

be determined by combining forearc drilling with seismic reflection images and material balance

considerations. The fluids lost from the downgoing plate can be sampled by drilling into fault

zones and serpentine seamounts. Output to the arc can be determined from the chemical

composition of the volcanics and from arc growth rates. The flux of crustal material that is

eventually recycled to the mantle is then the input minus the output. Because the bulk sediment is

not conserved through the entire subduction process, chemical tracers must be used to track the

sediment and deduce the recycling processes. Thus, the problem is impossible to solve by remote

means and is completely dependent on drilling to recover material for chemical analysis. 

Determination of crustal fluxes into the mantle is not yet possible largely because the various parts

of the problem are being investigated at different margins. Although this is a good way to

understand individual processes, it is not a good way to determine the behavior of the entire

system. The approach that we emphasize here is to try to solve the recycling equation at a few

margins where significant progress can be made by a focused drilling effort. 

Recent studies have focused on tracers of the subduction process (fluids and chemical components
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from the subducted sediment and basalt). Subducted material has been successfully identified in

forearc fluids and serpentinite mud volcanoes (Mottl, 1992; Fryer, 1992), in arc volcanoes (Tera et

al., 1986; Plank and Langmuir, 1993), and in backarc volcanism (Stolper and Newman, 1994).

Laboratory experiments have helped in understanding the dehydration and/or melting processes in

the downgoing slab that send material back to the overlying crust. What is now needed is to move

beyond the tracer approach to begin to try to mass balance the recycling process. How much

subducted material returns to the arc lithosphere vs. how much is mixed back into the mantle?

How is the subducted material chemically modified during this process? These are the questions

behind Crustal Mass Balances, a theme that appears in the Ocean Drilling Program (ODP) Long

Range Plan, the MARGINs Initiative Science Plan, and a JOI/USSAC Workshop on Crustal

Recycling (Scholl et al., 1996).

BACKGROUND

Crustal Recycling at the Izu-Mariana Margin

There are several reasons why the Izu-Mariana margin (Fig. 2) is ideal for studying subduction

recycling. Significant progress has already been made on many parts of the flux equation. Forearc

sites of fluid outflow (serpentine seamounts) have already been drilled (Leg 125; Fryer, 1992), as

have most of the sedimentary components being subducted at the Mariana Trench (Leg 129;

Lancelot, Larson, et al. 1990). These volcanic arcs and backarcs are among the best characterized

of intraoceanic convergent margins, both in space and time (Legs 125 and 126; Gill et al., 1994;

Arculus et al., 1995; Elliott et al., 1997; Ikeda and Yuasa, 1989; Stern et al., 1990; Tatsumi et al.,

1992; Woodhead and Fraser, 1985), and the problem is simplified here because the upper crust is

oceanic, so upper crustal contamination is minimized. Sediment accretion in the forearc is

nonexistent (Taylor, 1992), so sediment subduction is complete. Despite the simple oceanic setting

and the shared plate margin, there are still clear geochemical differences between the Mariana and

Izu Arcs (e.g., in Pb isotopes and elemental enrichments; Figs. 3A and 3B). The divergence of

compositions between the volcanics of these two oceanic arcs provides the simplest test for how

the composition of the subducting crust affects them. The key missing information is the

composition of the incoming crustal sections, particularly the (altered) basement sections. 
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Existing Crustal Inventory at the Izu-Mariana Margin 

Of the eight sites drilled in the seafloor immediately east of the Izu-Bonin Trench (not including

the Shatsky Rise sites), only one penetrated basement, Site 197 (Leg 20; Fig. 2). No sediments,

however, and only 1 m of basalt were recovered. Recovery was poor at most of the other sites: 

less than 25 m of sediment was recovered at all sites drilled during Leg 20 (Sites 194-198), and the

recovered material was dominantly pelagic clays above resistant cherts. Although more was

recovered at Sites 52 (45 m) and 578 (165 m), drilled during Deep Sea Drilling Project (DSDP)

Legs 6 and 86, respectively, coring again was halted by chert layers, leaving hundreds of meters of

unsampled sediment below. Prior drilling has provided us with many samples of the upper 50 to

150 m of the pelagic clay and ash unit, but almost nothing of the units below, including the oceanic

crust. 

•  The main goal of Izu-Bonin coring is to sample all sedimentary units and the upper alteration

zone (~300 m) of the oceanic crust below.

The success rate in coring sediments and basement to the south, seaward of the Marianas, was just

about as poor as that experienced to the north, until Leg 129, when three complete sections (ODP

Sites 800-802) were sampled through the cherts to "basement." During Leg 129, sedimentary

units were well sampled at Sites 800-802, but normal oceanic crust was sampled at only one site,

Hole 801C. At the other two sites, off-axis Cretaceous sills and flows were encountered as

"basement." The crustal inventory at the Mariana Trench includes (from top to bottom):  pelagic

clay, chert, and radiolarite (+ chalk), Cretaceous volcaniclastic turbidites, radiolarite, off-axis

Cretaceous intrusives and extrusives, and Jurassic oceanic crust. Leg 129 coring and prior DSDP

efforts provided adequate samples of the sedimentary units being subducted at the Mariana Trench

(providing estimates of chemical fluxes with better than 30% precision for most elements [Plank

and Langmuir, 1998]). However, the only sample of Jurassic oceanic crust, which must comprise

the largest mass of crustal material being subducted at the Mariana Trench, comes from the lowest

63 m in Hole 801C (of the ~135 m total penetration into basement in Holes 801B and C, only the

lower 63 m of drilling recovered 43 m of normal, Jurassic tholeiitic oceanic crust). 

•  Thus, the main goal of Mariana coring is to provide a more complete sampling of the upper

alteration zones in the Jurassic seafloor, which constitutes a significant part of the budget for

many geochemical tracers of the subduction process, including H2O, CO2, Rb, and U.
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Existing Crustal Mass Balance for the Marianas

With information in hand, it is possible to calculate many of the input and output fluxes for a few

chemical components through the Marianas subduction zone. We consider here a preliminary flux

balance for H2O (Fig. 4). The sediment input is fairly well constrained by previous coring during

Leg 129 (Sites 800-802), and by the extensive chemical analyses of the recovered material (Karl et

al., 1992; Karpoff, 1992; Lees et al., 1992; France-Lanord et al., 1992) as well as the geochemical

logs for the different holes (Pratson et al., 1992; Fisher et al., 1992). As a result, H2O flux

estimates for sediments from Sites 800 and 801 are quite consistent with one another (within

15%). The other crustal input flux is the subducting oceanic crust, which is very poorly constrained

because of a lack of significant penetration into the mid-ocean ridge (MOR) basement in this area

(63 m in Hole 801C). The geochemical budget of elements in the oceanic crust has two sources: 

primary igneous and secondary alteration. The primary igneous composition is fairly well

constrained, based on extensive sampling of modern mid-ocean ridge basalt (MORB) and on the

relatively unaltered samples recovered from Hole 801C. The secondary alteration fluxes are

virtually unknown, however, and can only be estimated from various other regions, compilations,

and assumptions:  the average global H2O flux in Peacock (1990), alteration studies of DSDP

Hole 504B (Leg 69; Alt et al., 1986) and DSDP Sites 417/418 (Legs 51, 52, and 53; Staudigel et

al., 1995), and assuming 10% interpillow material in Hole 801C (Castillo et al., 1992b). These

estimates show that the alteration fluxes may be large, but are poorly known. The applicability of

existing data (obtained for slow-spreading old crust at Sites 417 and 418 and medium-spreading

young crust in Hole 504B) to the crust seaward of the Mariana Trench (old-fast spreading)

remains to be seen and is, in fact, a major goal of Leg 185.

Unique to the seafloor seaward of the Mariana Trench is an overprint of Cretaceous basement

flows and sills. There are two sources of uncertainty in estimating this flux:  the thickness of the

Cretaceous "basement" layer and its chemical composition. Calculations based on sonobuoy

velocities, reflection data, and drilling results from Leg 129 indicate a 100- to 400-m-thick layer of

massive Cretaceous basalt, and possibly some interbedded sediments, overlying Jurassic oceanic

crust (Abrams et al., 1993). Although this is not the case for water, the total flux of many elements

depends critically on whether this Cretaceous basalt is alkalic (as for Site 800 basalts and various
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seamounts of the Pigafetta Basin [PB]) or tholeiitic (as for Site 802 basalts of the East Mariana

Basin [EMB]). Although plate trajectories (Fig. 2) indicate that the seafloor subducting beneath the

Marianas is largely the tholeiitic EMB, we consider both EMB (tholeiitic) and PB (alkalic) type

basalts in estimating the water flux into the subduction zone (Fig. 4). Both estimates yield small

water input fluxes relative to the sediment and altered Jurassic MORB.

The first measurable outputs from the subduction zone are the forearc fluids, which have shown to

be freshened and from a subducted source (Mottl, 1992). It is currently difficult to estimate rates

based on the fluid flow itself. We, therefore, use a model based on the total (maximum) water

generated during clay mineral breakdown in the subducted sediments (Plank et al., 1994). This

calculation is model dependent, but further study of the nature of these fluids will help to identify

the actual dehydration reactions that are occurring with depth during subduction. Figure 4 shows

that the water outputs to the forearc may be a significant fraction of the sediment input. Magmatic

outputs to the volcanic arc and backarc are determined from the chemical composition of arc and

backarc basalts (assuming 5.7 and 1.25 wt% H2O above MORB background, respectively; Stolper

and Newman, 1994) and from magmatic addition rates. The magmatic arc water flux is the largest

of the crustal outputs from the subduction zone. 

These preliminary calculations provide some initial insights into the flux balance in subduction

zones and reveal where the major uncertainties lie. If we ignore the igneous MORB and

Cretaceous basalt contributions as no net gain from the mantle perspective, then the continental

water inputs and outputs appear to be remarkably closely balanced across the subduction zone. The

balance hinges critically, however, on the magnitude of the basement alteration fluxes. Present

estimates are poor, and the actual flux balance could still go either way. 

• Drilling through the upper oceanic crust subducting beneath the Marianas can dramatically

improve one key flux in the mass balance equation—the alteration flux.  
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Existing Crustal Mass Balance for Izu-Bonin

Because neither the sediments nor the altered oceanic crust seaward of the Izu Trench have been

sampled to any significant extent, our ability to determine mass balance is much more limited here.

However, we can make some predictions about the crustal inputs to the Izu Trench based on the

Izu volcanic output. Izu basalts record almost half the K or Ba enrichment of Marianas basalts

(Fig. 3B), whereas sediment mass fluxes into the two trenches are roughly comparable, or even

greater, at Izu (600 m of sediment into Izu vs. 400 m into the Mariana Trench). Thus, Izu

sediments should be much poorer in K and Ba than Marianas sediments. One way to explain this

would be to replace the volcaniclastic sections in the Marianas sediment columns with cherts,

which are barren of K and may be very poor in Ba (Karl et al., 1992). This makes some sense

given what we know about the history of sedimentation in this part of the ocean—the Cretaceous

overprint east of the Marianas may be absent to the north, east of Izu (Fig. 2), where the seafloor

spent a longer time on average beneath equatorial zones of high biologic productivity (Fig. 5),

possibly leading to greater sections of chert and/or carbonates. Drilling the seafloor east of Izu can

directly test these predictions. Sediment layers are fairly uniform throughout the region, reflecting

uniform pelagic sedimentation. Thus, a single hole should give us a fairly representative sampling

of sediments being subducted at the Izu Trench. If the extra thickness of sediments off Izu is not

dominantly barren cherts, this means that much of this sediment does not contribute to arc

magmas, either because it is underplated (we can see that it is not accreted), or because it fails to

dewater or melt beneath the arc. Thus, by drilling and sampling the crustal inputs, we can learn

more about the process of sediment subduction and recycling.

The geochemical differences between the Marianas and Izu arc volcanics could also be related to

the chemical composition of the altered oceanic crust. The K or water contents in the altered

basaltic sections may vary regionally, possibly explaining regional variations in K and the extent of

melting reflected in Marianas and Izu lavas. This can be tested by drilling the upper oxidative

alteration zone, which contains most of the alkali budget in the oceanic crust, in both regions.  

Finally, some of the differences between the Izu and Marianas lavas may have nothing to do with

subducted input and may be explained by more enriched mantle beneath the Marianas. Evidence

for enriched mantle in the region comes from enriched shoshonites at the adjacent volcanic arc
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(Bloomer et al., 1989; Lin et al., 1989). Although drilling cannot test whether enriched mantle

exists beneath the Marianas, it can make invoking it unnecessary. 

SCIENTIFIC OBJECTIVES

Previous drilling has already provided many parts of the crustal flux equation at the Izu and

Mariana Margins and provides a strong rationale for continuing the effort to mass balance fluxes

across the subduction zones. The missing part of the flux equation is largely the input:  (1) both the

incoming sediment and basaltic sections approaching the Izu-Bonin Trench, and (2) the altered

oceanic crust seaward of the Mariana Trench. In order to provide this critical information on the

crustal inputs to the subduction zone, drilling is planned at two sites:  one seaward of the Mariana

Trench (ODP Hole 801C), and one seaward of the Izu Trench (proposed Site BON-8A).

Hole 801C 

The primary motivation for returning to ODP Hole 801C, seaward of the Mariana Trench (Fig. 2),

is to sample the upper oxidative zone of alteration of this oldest in situ oceanic crust. Previous

drilling during Leg 129 only penetrated 63 m into "normal" Jurassic basement. Based on Hole

504B and other basement sites with sufficient penetration, the upper oxidative zone of alteration,

which contains the lion's share of some element budgets (e.g., K, B, etc.), lies in the upper 200-

300 m of the basaltic crust (Alt et al., 1986; Staudigel et al., 1995). The transition from volcanics to

sheeted dikes may not lie much deeper:  500-600 m at Hole 504B (Detrick et al., 1994); 450 m to

Layer 2b (Carbotte et al., 1997); and only a few 100 m at Hess Deep (Francheteau et al., 1992).

We propose to deepen Hole 801C an additional 250 m (~400 m total basement penetration) into

basement at Hole 801C to accomplish the following scientific objectives to

1. characterize the geochemical fluxes and geophysical aging attending the upper oxidative

alteration of the oceanic crust in Hole 801C (as discussed above);

2. compare igneous compositions, structure, and alteration with other drilled sections of in situ

oceanic crust, in particular 504B, contrasting a young site in Pacific crust with the oldest site

in Pacific crust;

3. help constrain general models for seafloor alteration that depend on spreading rate and age.
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Hole 801C is in the world's oldest drilled oceanic crust, which is at 165 Ma and was formed

at a fast-spreading ridge at ~160 mm/yr full-rate, therefore it embodies several end-member

characteristics; and

4. test models for the Jurassic Magnetic "Quiet" Zone (JQZ). Hole 801C is located in an area

of very low amplitude magnetic anomalies, usually called the Jurassic Magnetic "Quiet"

Zone. The JQZ has been suggested to result from (1) oceanic crust of a single polarity with

small anomalies due to intensity fluctuations, (2) oceanic crust with magnetic reversals so

numerous as to "cancel each other out" when measured at the sea surface, or (3) oceanic

crust with a more normal frequency of magnetic reversals acquired when the dipole field

intensity was anomalously low. Deepening Hole 801C would allow testing of the above

hypotheses, and in particular, of the third hypothesis of magnetic reversals during a period of

anomalously low field intensity, if fresh unaltered volcanic glass could be obtained. Such

material can yield reliable paleointensity information (Pick and Tauxe, 1993) on the very fine,

single-domain grains of the titanium-free magnetite within the volcanic glass. 

Site BON-8A 

The primary motivation for proposed Site BON-8A, a site ~60 km seaward of the Izu Trench

(Fig. 6), is to provide the first complete section of sediment and a significant section of altered

oceanic crust that enters this subduction zone. Previous drilling failed to penetrate successfully

through resistant cherts, so most of the sediment column is unsampled. Only 1 m of basalt has

been recovered from basement in this vast area (at DSDP Site 197). We propose to drill and core

the entire sedimentary sequence (470 m) at Site BON-8A, and as far into the upper oxidative

alteration zone of the basaltic basement as possible to a maximum basement penetration of 430 m.

The scientific objectives are to

1. provide estimates of the sediment inputs and altered basalt inputs (geochemical fluxes) into

the Izu subduction zone (as discussed above);

2. contrast crustal budgets here with those for the Marianas, to test whether along-strike

differences in the volcanics can be explained by along-strike variations in the crustal inputs

(as discussed above);  

3. compare basement alteration characteristics with those in Hole 801C (also in old Pacific
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crust); 

4. provide constraints on the Early Cretaceous paleomagnetic time scale. Site BON-8A is

approximately on magnetic anomaly M12 (Nakanishi et al., 1988). Its basement age should

be about 135 Ma and should correspond to the Valanginian Stage of the Early Cretaceous

according to recent time scale calibrations (Harland et al., 1990; Gradstein et al., 1994;

Channell et al., 1995). However, those age estimates are poorly known and can be tested by

drilling at Site BON-8A. Specifically, a reasonably precise date on M12 at Site BON-8A

could test the proposed new time scale of Channell et al. (1995); and 

5. provide constraints on mid-Cretaceous carbonate compensation depth (CCD) and equatorial

circulation fluctuations. Based on its theoretical Cretaceous paleolatitude history, Site BON-

8A may have formed at ~5°S, drifted south to 10°S in its early history and then gradually

drifted north, crossing the paleoequator as the Pacific plate accelerated its northward motion

about 85-90 Ma. A site such as BON-8A with an Early Cretaceous basement age (~135

Ma), an equatorial paleolatitude history during the mid-Cretaceous, and a predictable

subsidence history for the Cretaceous is ideal for testing proposed CCD variations

(Theirstein, 1979; Arthur et al., 1985). In addition, Erba (1992), following Roth (1981), has

shown that certain species of nannoplankton can be characterized as "high fertility indices"

and used as approximate indicators for the paleoequatorial upwelling zone. Using these

nannoflora, potential fluctuations in the mid-Cretaceous equatorial circulation system could

be studied at Site BON-8A when the site was nearly stationary near the paleoequator

(especially from 115-95 Ma).

Deep Biosphere

During Leg 185, scientists will conduct contamination tests and develop a standard sampling

procedure for deep biosphere research. The objective of the contamination test is to determine the

amount of mixing created by the coring process by introducing a tracer (latex beads) at the mouth

of the core barrel as the core is cut. Some limited shipboard microbiological analyses will be

conducted during Leg 185 (i.e., direct bacterial counts using the existing epifluorescence

microscope). Most of the samples, however, will be adequately stored for shore-based analysis.
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Diamond Core Barrel (DCB)

Leg 185 has a total of two days allocated to conduct tests of the diamond core barrel (DCB) at both

Sites 801C and Bon-8A. Comparison of DCB techniques, hardware, and results in varied

lithologies has great value to longer-term ODP goals and the DCB development program. The

greatest potential benefit of the DCB tests to Leg 185 is to optimize core recovery and quality.

REGIONAL GEOLOGICAL SETTING OF PROPOSED SITES

Hole 801C

Although located almost 1000 km from the Mariana Trench, Hole 801C is the most promising site

for penetrating Jurassic MORB in the region. Throughout much of the Pigafetta and East Mariana

Basin (Fig. 2), "basement" consists of Cretaceous flows and sills that overlie the "normal" Jurassic

crust. Because these Cretaceous units have already been sampled by Leg 129 drilling, the

remaining goal is the MORB section. Hole 801C is the only location where Jurassic-aged material

(165 Ma) was reached in a reasonable amount of drilling time, and that material should be

essentially the same as what is now being subducted beneath the Marianas (also fast spreading and

within 15 m.y. in age). It is necessary to penetrate several hundred meters into the upper oxidative

layer of Jurassic basement to constrain that part of the crustal input equation, and that section is

now available directly beneath the bottom of Hole 801C. Hole 801C was left clean with a reentry

cone that is cased and cemented into basement, and is ready for more extensive basement drilling. 

Above basement, the 460 m sedimentary section is dominated by pelagic clays and cherts, with

notable intervals of volcaniclastic material from the mid-Cretaceous, derived from the nearby

Magellan Seamounts. Specifically, the sedimentary stratigraphy at Site 801 consists of a thin

pelagic brown clay unit (64 m, Cenozoic-Campanian /Maestrichtian?) overlying 63 m of brown

chert and porcellanite (Campanian-Cenomanian) overlying 192 m of volcaniclastic turbidites

(Cenomanian-Albian) overlying 125 m of brown radiolarite (Valangian-Oxfordian), with a basal

unit of alternating red radiolarite and claystone (19 m, Callovian). Further background on Site 801

can be found in Lancelot, Larson, et al. (1990). 
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Site BON-8A 

Site BON-8A is ~60 km east of the Izu-Bonin Trench, where the plate surface is broken by

normal faults as it bends into the subduction zone (Fig. 7). Avoiding some of this complexity, Site

BON-8A is located on the top of a fault block in flat-lying sediments. Coring the complete

sedimentary section as well as the altered oceanic crust at Site BON-8A will sample the main

crustal components that enter the Bonin trench. Based on our assessment of regional variations in

subducting sediments elsewhere (Plank and Langmuir, 1998), we feel confident that a single

reference site will provide adequate constraints on the crustal inputs to the Izu-Bonin Trench. Even

though the sedimentary stratigraphy will vary regionally, changes in unit thickness can be mapped

more efficiently seismically than with multiple drill holes. Site BON-8A should provide us with

samples of the largely pelagic sediments from the region. Of the ~470 m of sediment, we

anticipate 170 m of pelagic clay and volcanic arc ash above 300 m of mid- to Early Cretaceous

cherty porcellanites and chalks (Fig. 7). The basement should be Early Cretaceous MORB (135

Ma), with the upper 200-300 m of extrusives containing the oxidative alteration zone.  

DRILLING STRATEGY

Hole 801C

The objective at this site is to re-enter the cone at Hole 801C (Leg 129) and penetrate through the

upper, oxidative alteration zone in basaltic basement, deepening Hole 801C at least another 250 m,

to >850 mbsf or ~400 m sub-basement. A drill-string length of 6530 m will be deployed, which

would be one of the longest drill strings that the JOIDES Resolution will have deployed, and

drilling will be in basaltic rocks. Expected rates of penetration with the rotary core barrel (RCB)

may be as low as 1.5 m/hr (as experienced during Leg 129) and trip times will be long. It should

be possible with 20 days on site to achieve >250 m of penetration into basement, and conduct three

logging runs. We will actively monitor the chemical composition of the cores on board the ship to

determine the changes in the alteration zones.

The most likely drilling problems to be encountered will be due to drilling materials (junk) left in

the hole. In such an event some time will be spent fishing the junk, to continue the hole to >250 m

depth into basement. A decision will be made on site as to the time to be dedicated to fishing and
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continued drilling, given the requirement for at least 15-20 days operations at Site BON-8A. If a

new hole is needed for technological reasons, our first recourse will be to move a few 100 ft and

wash to basement and start again. In the case where drilling problems are geological (an

unfavorable formation) an alternate site has been designated (PIG-3B), ~75 km east of Site 801

(Fig. 2). Given the amount of time involved in washing down to the last depth of penetration at

Hole 801C (~600 m) or starting a new hole at PIG-3B, it is likely that if such problems are

encountered after the first week of operation at Hole 801C, further efforts will be shifted to Site

BON-8A.

Site BON-8A

The objectives for Site BON-8A are to continuously core the sedimentary section (470 m) and the

upper pillow alteration zone in the basement section (as deeply as possible). Drilling conditions

and hole stability in the sedimentary section are predicted to be good at this site, but recovery will

be moderate to poor in the anticipated chert-rich sediments. In order to optimize recovery, a

combination of the advanced hydraulic piston/extended core barrel/motor-driven core barrel

(APC/XCB/MDCB) corers will be used, ideally, to core the entire sedimentary section. Recovery

within chert sequences, especially of soft, chalky sediments, was still a problem on Leg 129

because of the need to pump heavily during chert penetration to keep the hole clean. The

dramatically increased recovery of hydrothermal sediments in the Trans-Atlantic Geotraverse

(TAG) area on Leg 158 with the newly designed MDCB raises the encouraging possibility of

similar enhanced recovery in chert/chalk sequences. Four logging runs will follow

APC/XCB/MDCB drilling in the pilot hole.  

As stated above, if the drilling operation in Hole 801C fails, and there is insufficient time to

achieve our stated objectives at this site, operations will be moved to Site BON-8A. Complete

operations at this site involve coring of the sedimentary section, logging the sediments, installation

of a reentry cone and casing and cementing into basement (470 m), and drilling with a

combination of RCB, MDCB, and diamond coring system (DCS) to at least 200 m below the

sediment/

basement interface. The basement will be logged following drilling operations. The entire operation

involving the establishment, coring, and logging of a legacy hole will take 26–28 days. 
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Depending on the time spent in Hole 801C, a series of scenarios are envisaged for coring the

sediments and penetrating at least 50 m into basement, and logging the section at Site BON-8A.

We stress the fact that it is essential that the sedimentary section at this site be logged to define the

proportions of representative lithologies and compute the mass flux into the subduction zone. This

operation could involve a minimum program, involving drilling a single hole using a single RCB

bit, through the sediments and basement, dropping the bit, and logging through the hole through

the drill-string (10–12) days. A more complete drilling operation (using APC/XCB/RCB/MDCB

combinations) at this site would involve reentry of the hole by use of a Free-Fall Funnel (FFF).

This would allow deeper coring into basement and complete logging of the section (15 to 22 days),

depending on depth of penetration into basement and the number of logging operations. The

logging operations will involve, either (1) a logging run after the sediment section is cored and a

further run after basement is cored, thus creating maximum hole quality for logging the sediments,

or (2) a single logging operation at the end of coring the sediments and basement. If hole quality is

not good enough for logging, the possibility exists for drilling a separate hole using a tricone bit,

followed by logging.

In the case of loss of the hole at Site BON-8A (again this would most likely be because of drilling

problems involving junk in the hole in the basement section), we propose to drill a hole adjacent to

the lost hole. For this hole, we would wash down through the sedimentary section, install a second

reentry cone, and drill as deep as possible within the time constraints; a minimum drilling

operation as described above would be essential to the success of the project. In the case where the

drilling problems are geological (an unfavorable formation) an alternate site has been designated

(proposed Site BON-9), ~10 km east of BON-8A (Figs. 6, 7).
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LOGGING PLAN

Recording downhole geochemical and physical properties data during Leg 185 is essential to filling

recovery gaps in both sediment and basement sections, as well as enabling site-to-site comparisons

of the geochemical signatures of the drilled sequences. 

Downhole Measurements in Hole 801C

Downhole measurements were conducted in the upper 100 m of basement during Leg 144 to

begin the characterization of typical old oceanic crust generated at a fast-spreading rate (Larson et

al., 1993). The most surprising result from Leg 144 downhole measurements was the extremely

high permeability measured below 501 mbsf in a hydrothermal alteration zone. This zone appears

to act as an aquifer, an argument supported with the apparent bulk porosity profile. Below the

hydrothermal zone and within the tholeiitic basalts, the logs begin to approximate more expected

values for old oceanic crust. To further characterize the petrology, hydrogeology, structure, and

physical properties of the old oceanic crust, the hole will be logged with the triple combo,

Formation MicroScanner (FMS)/Sonic, and Geologic High-resolution Magnetometer Tool

(GHMT) tool strings. The triple combo consists of the HNGS (Hostile Environment Natural

Gamma Sonde), APS (Accelerator Porosity Sonde), HLDS (Hostile Environment Litho-Density

Sonde) and DITE (Dual Induction Tool) with the Lamont Temperature Logging Tool (TLT)

attached to the bottom of the string. The FMS/Sonic string will contain a standard four pad FMS

tool combined with a DSI (Dipole Shear Sonic Imager) sonic tool. Lastly, to satisfy the time-scale

objective (i.e., to determine the age of the basement), the magnetic susceptibility and total magnetic

field measurements obtained by the GHMT will be deployed to provide a paleomagnetic reversal

sequence of the overlying sediment.The anticipated logged interval will be from casing at 481

mbsf to the new total depth expected to be about 850 mbsf. 

In addition, if enough time is available, a packer experiment will be completed for the interval

below the hydrothermal deposit drilled on Leg 129 at 501 mbsf and the bottom of the newly

drilled basement section. This experiment will complement results on the permeability of the

basement obtained on Leg 144 (Larson et al., 1993), and may provide important constraints on the

alteration process and fluid flow in old oceanic crust. 
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Downhole Measurements at Site BON-8A

The oceanic crust subducted in the Izu-Bonin Trench has never been sampled or logged. Because

determining the geochemical budgets in sediment and basement columns is central to the

objectives of Leg 185, geochemical logging tool (GLT) will be extremely valuable. Geochemical

logging on Leg 129 served as an excellent proxy for actual recovery of sediments similar to those

expected at Site BON-8A (Fisher et al., 1992).

To compare the sedimentary sequence and the upper oceanic crust at Site BON-8A with those in

Hole 801C, the triple combo, FMS/Sonic, and GLT will be deployed.  The GLT is typically

combined with an AACT (Aluminum Activation Tool), which requires a Californium 252 source. 

Logging at Site BON-8A will occur in two stages to optimize data quality and logged depth. The

first logging operation will be completed through the APC/XCB bottom-hole assembly (BHA)

following the cessation of drilling near the sediment/basement contact. The second logging

program will be completed through the RCB BHA after completion of the hole to basement. The

standard tool-string deployment sequence is triple combo, FMS/Sonic, GLT, and GHMT.

SAMPLING STRATEGY

New sampling guidelines specify that a formal, leg-specific sampling strategy must be prepared by

the Sample Allocation Committee (SAC:  co-chiefs, staff scientist, and ODP curator

onshore—curatorial representative on board ship) for each prospectus. Any modification of the

sampling strategy during Leg 185 must be approved by the SAC following evaluation of sample

requests by the shipboard party at each site.

Nominal Sample Limit

Leg 185 shipboard scientists may expect to obtain up to 100 samples of no more than 15 cm3 in

size. Additional samples may be obtained upon written request onshore soon after the cores are

sent to the ODP Repository. Depending on the penetration and recovery during Leg 185, the

number of samples taken may be increased by the shipboard SAC. All sample requests must be

made on the standard sample request form and approved by the SAC.
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Samples larger than 15 cm3 may be obtained with approval of the SAC, but will be considered as

the equivalent of multiple samples in partial or complete increments of 15 cm3. Requests for large

samples must be specified on the sample request form. 

Multiple Analysis of Samples

Some redundancy of measurement is unavoidable, but minimizing redundancy of measurements

among the shipboard party and identified shore-based collaborators will be a factor in evaluating

sample requests. For Leg 185, we anticipate the preparation of samples for which splits will be

analyzed in different laboratories. We stress the importance of having a coherent data set on the

same powdered or solid samples.

Shipboard Samples and Data

Following core labeling, measuring nondestructive properties, and splitting, samples will be

selected from core working halves by members of the Leg 185 shipboard party for routine

measurement of physical and magnetic properties, bulk chemical analyses by X-ray fluorescence

(XRF) and carbon-hydrogen-nitrogen-sulfur (CHNS) analyzer, and X-ray diffraction (XRD), as

necessary. Polished thin sections will be prepared for identification of minerals, determination of

mineral modes by point counting, and studies of texture and fabric. In most cases these samples

will serve as the shore-based material for full analysis by multiple laboratories.

Shipboard thin sections, selected from representative sections of the core and at some critical

intervals, will remain the property of ODP. The thin-section chips from which the sections are

made will be retained by ODP and should normally be thick enough to allow for the production of

additional sections unless the sampling plan for a critical interval precludes this. Members of the

Leg 185 shipboard party can request the production of a thin section from these thin-section chips

for their personal use, at their own expense, and as part of their nominal 100-sample limit.

Scientists must arrange for the prepaid manufacture of these thin sections with a third-party

commercial service unless otherwise approved by the ODP core lab curator. The thin-section chip

will then be sent directly to the commercial service and returned directly to ODP.
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Critical Intervals

If critical intervals of unusual scientific interest are identified during the core description process, a

sampling protocol will be established by the interested scientists and shipboard SAC.

Small Samples

Studies requiring only small-sample volumes (1 cm3 or less, e.g., for veins, fluid inclusions, etc.)

may require more than 100 samples to characterize a long section of core. The SAC will review

the appropriate sampling interval for such studies as the cores are recovered. Ideally, many of these

studies will be coordinated with the shipboard and shore-based sampling protocols. 
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FIGURE CAPTIONS

Figure 1. The crustal fluxes through a subduction zone (after von Huene and Scholl, 1993).

Arrows indicate schematic flow, not detailed flow patterns. The return flux of crustal material to

the mantle depends on many other fluxes:  the partitioning of bulk sediment in the shallow part of

the subduction zone (by accretion, underplating, and erosion), the chemical and fluid fluxes due to

sediment dehydration and melting, and the chemical fluxes to the volcanic arc and backarc.

Figure 2. Map of the Western Pacific and Mariana, Izu-Bonin, and Northern Mariana Seamount

Province volcanic arcs. Solid circles = existing drill holes; most coring that occurred prior to Sites

800-802 failed to penetrate the complete sedimentary section and/or had poor recovery. Shaded

seafloor includes Pigafetta Basin (PB) and Magellan Seamount, where alkalic Cretaceous overprint

predominates. Solid triangles = active volcanoes. Site BON-8A and Hole 801C are proposed drill

sites. Ogasawara Fracture Zone-Magellan Seamount Flexural Moat (OFZ-MSM) after Abrams et

al., 1992 (their fig. 2). Curved arrows = instantaneous trajectories for the Pacific Plate relative to

the Philippine Plate, after Seno et al., (1993). Dashed curves = continuation of trajectories beneath

the arc. EMB = East Mariana Basin. N. Smt. Prov. = Northern Seamount Province. Gray shaded

boxes show Leg 125 and 126 drilling areas and the Izu Crosschains. The Izu Crosschains shaded

box shows the location of a cruise in 1995 that conducted detailed sampling of the Izu Crosschain

seamount volcanoes. These samples provide excellent controls on spatial and temporal variations

in slab outputs across the Izu-Bonin arc.

Figure 3. A. Contrasting Pb isotopic composition of Marianas (open circle) and Izu-Bonin (solid

circle) arc volcanics. Marianas volcanics form a mixing trend (arrow), almost perfectly coincident

with mixtures of ODP Hole 801C sediment (open boxes) and basalt (solid boxes) averages.

Drilling at Site BON-8A will test whether the Izu-Bonin Arc trend (arrow) is consistent with

different subducted material than for the Marianas. Modern Indian MORB, Pacific MORB, and

Honshu Arc data are shown for reference. Data sources:  Elliott, et al., 1997; Gill, et al., 1994;

Plank and Langmuir, 1998; Castillo et al., 1992a; and Gust et al., 1997.  B. Correlation between Ba

flux in subducted sediment and Ba enrichment of arc basalts for various arcs (Ant = Northern
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Antilles, Mar = Marianas, T= Tonga, Mex = Mexico, J = Java, Al = Aleutians, and G =

Guatemala) around the world (after Plank and Langmuir, 1993). Open circles = three different

sediment flux estimates for the Marianas, based on the three ODP Sites drilled during Leg 129

(800-802) (Plank and Langmuir, 1998). Although there are variations from site to site, the average

sediment input to the Marianas is fairly well constrained (+/- 20%). Note Izu volcanics are lower in

Ba/Na than Marianas volcanics by a factor of two. Drilling at Site BON-8A will help to test if the

low Ba/Na of the Izu volcanics is related to a lower Ba sediment flux. Shown for reference are the

average Mariana Ba sediment flux and the flux for a 600-m section of chert (with 125 ppm Ba,

similar to the upper radiolarites in Hole 801C; Karl, et al., 1992). 

Figure 4. Estimates of H2O input and output fluxes for the Marianas subduction zone. Height of

bar gives the flux for each parameter (scale on the left); bars are placed side-by-side to show

competing estimates (as for Site 801 vs. Site 800 sediment) and are stacked to show cumulative

input (on the right) and output (on the left). Shaded bars represent "continental" fluxes; unshaded

bars are pristine igneous fluxes. Note that continental inputs and outputs may be very closely

balanced; however, the balance depends critically on the real alteration fluxes for Hole 801C, which

can only be constrained by further drilling. Cretaceous overprint given for both the East Mariana

Basin (EMB) and Pigafetta Basins (PB); lines show fluxes resulting from different layer thickness

(100, 250, 400 m).

Figure 5.  Theoretical Mesozoic paleolatitude histories of ODP Sites 801 and BON-8A based on

the combined polar wander paths for the Pacific plate of Sager and Pringle (1988) for 60-100 Ma

and Larson and Sager (1992) for 100-155 Ma. Great circle distances are measured at 5-Ma

intervals on the combined polar wander path to the present-day site locations and then converted to

paleolatitudes to construct these histories. The paleolatitudes of 155-165 Ma for ODP Site 801 are

based on measured remanent inclinations in Jurassic core samples from that site.
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Figure 6. Location of Leg 185 drill site BON-8A and alternate BON-9.

Figure 7. Portion of seismic Line 39 from Conrad 2005 crossing the Izu-Bonin Trench. These

multichannel data have not been reprocessed. Note location of Leg 185 drill site BON-8A and

alternate BON-9 on top of fault blocks. 
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Table 1. Leg 185 Operations Plan and Time Estimate

Site Location Water Operations Description Transit Drilling Logging Total
No. Lat/Long Depth Operations Description (days) (days) (days) On-site

  PRIMARY SITES

Hong Kong Transit  2362 nmi from HONG KONG  to 801C  @ 9.5 kt 10.4

801C 18°38.54'N 5674 m C:  Deepen by RCB 252 m, DCB 54 m, Log 18.5 1.9 20.4

156 °21.6'E     

Total Days on Site: 20.4

Port Transit 1097 nmi from 801C to BON-8A @ 10.5 kt 4.5

BON-8A 31°18.5'N 6000 m A: APC 100 m, XCB 70 m, MDCB 13.5 m, XCB 96.5 m 4.2 4.2

142 °57.5'E     FFF reentry, DCB 198 m 3.7 3.7

B:  Drill 170 m, DCB 90 m 2.3  2.3

C:  Drill 495 m, Log 2.3 1.8 4.1

D:  Drill 470 m, RCB 110 m, Log (FFF reentry)  6.3 1.0 7.3

Total Days on Site: 21.6

Tokyo Transit 268 nmi from BON-8A  to TOKYO  @ 10.5 kt 1.1

Subtotals 16.0 37.3 4.7 42.0

TOTAL DAYS: 58.0
 ALTERNATE SITES

PIG-3B 18°39.78'N 5700 m 9.7 9.7

157 °5.7'E RCB 300 m, Log  17.6 1.9 19.5

Total Days on Site: 29.2

A:  Install reentry cone, dual casing, drill to 594 mbsf

BON-9 31°18.5'N 5875 m 4.1 4.1

143 °2.5'E     FFF reentry, DCB 198 m  3.6 3.6

B:  Drill 170 m, DCB 90 m 2.3 2.3

C:  Drill 495 m, Log 2.3 1.8 4.1

D:  Drill 470 m, RCB 110 m, Log (FFF reentry) 6.2 1.0 7.2

Total Days on Site: 21.3

DIR: ODPPUB.ART:185 Dropbox:PDF BY:  

A: APC 100 m, XCB 70 m, MDCB 13.5 m, XCB 96.5 m
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SITE SUMMARIES

Site:  BON-8A

Priority:  1
Position:  31°18.5´N, 142°57.5´E
Water Depth:  6000 m
Sediment Thickness:  600 m
Target Drilling Depth:  900 mbsf
Approved Maximum Penetration:  900 mbsf
Seismic Coverage: Conrad 2005, Line 39, shotpoint #2936 at 1613Z on 10/13/76

Objectives:  The objectives of BON-8A are the following

1. Provide estimates of the sediment inputs and altered basalt inputs (geochemical fluxes) into
the Izu-Bonin subduction zone. 

2. Contrast crustal budgets here with those for the Marianas to test whether along-strike
differences in the volcanics can be explained by along-strike variations in the crustal inputs.

3. Compare basement alteration characteristics with those in Hole 801C (also in old Pacific
crust). 

4. Provide constraints on the Early Cretaceous paleomagnetic time scale. 

5. Provide constraints on mid-Cretaceous carbonate compensation depth (CCD) and equatorial
circulation fluctuations.

Drilling Program:  APC, XCB, MDCB, RCB

Logging and Downhole Operations: Triple combo, GLT, FMS/Sonic, GHMT, ARI,
Permeability

Nature of Rock Anticipated:  Pelagic clay with volcanic arc ash (150 m); cherty porcellanites and
chalks (450 m); basaltic pillows, flows, breccia, and possibly dikes (>300 m)
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Site:  BON-9 

Priority:  2
Position:   31°18.5´N, 143°2.5´E
Water Depth:  5875 m
Sediment Thickness:  600 mbsf
Target Drilling Depth:  900 mbsf 
Approved Maximum Penetration:  900 mbsf
Seismic Coverage:  Conrad 2005, Line 39

Objectives:  The objectives of Site BON-9 are the same objectives as the primary site, BON-8A. 

Drilling Program:  Triple APC/XCB, MDCB, RCB

Logging and Downhole:  Same as Site BON-8A

Nature of Rock Anticipated:  Same as Site BON-8A
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Site: 801

Priority:   1
Position:  18°38.52´N, 156°21.6´E
Water Depth:   5674 m
Sediment Thickness:  460 m
Target Drilling Depth:  >850 mbsf
Approved Maximum Penetration:  950 mbsf
Seismic Coverage:  MESOPAC II, Line 10 at 0600, 8/26/89

Objectives:  The objectives of Site 801 are to:

1. Characterize the geochemical fluxes and geophysical aging attending the upper oxidative
alteration of the oceanic crust in Hole 801C.

2. Compare igneous compositions, structure, and alteration with other drilled sections of in situ
oceanic crust (in particular Hole 504B, contrasting a young site in Pacific crust with the
oldest site in Pacific crust).

3. Help constrain models for seafloor alteration that depend on spreading rate and age (Hole
801C contains the world's oldest oceanic crust drilled to date, which was formed at a fast-
spreading ridge, so it embodies several end-member characteristics).

4. Test models for the Jurassic Magnetic "Quiet" Zone.

Drilling Program: RCB

Logging and Downhole Operations: Triple Combo, GLT, FMS/Sonic, ARI, Permeability

Nature of Rock Anticipated: Basaltic pillows, flows, breccia, and possibly dikes (>350 m)
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Site:  PIG-3B

Priority:  2
Position:  18°39.78´N, 157°5.7´E
Water Depth:  5700 m
Sediment Thickness:  460 m
Target Drilling Depth:  1000 mbsf 
Approved Maximum Penetration:  mbsf
Seismic Coverage:  MESOPAC II, Line 9

Objectives:  The objectives of Site PIG-3B are the same objectives as the primary site, Site 801. 

Drilling Program:  Triple APC/XCB to <350 m

Logging and Downhole:  Same as Site 801

Nature of Rock Anticipated:  Same as Site 801
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