Figures | Table of Contents

REFERENCES

Bale, S.J., Goodman, K., Rochelle, P.A., Marchesi, J.R., Fry, J.C., Weightman, A.J., and Parkes, R.J., 1997. Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep-sediment layers in the Japan Sea. Int. J. Syst. Bacteriol. 47:515-521.

Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B.B., Witte, U., and Pfannkuche. O., 2000. Microscopic identification of a microbial consortium apparently mediating anaerobic methane oxidation above marine gas hydrate. Nature, 407:623-626.

Borowski, W.S., Paull, C.K., and Ussler, W., III, 1996. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology, 24:655-658.

Borowski, W.S., Paull, C.K., and Ussler, W., III, 1999. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates. Mar. Geol., 159:31-154.

Cragg, B.A., Harvey, S.M., Fry, J.C., Herbert, R.A., Parkes, R.J., 1992. Bacterial biomass and activity in the deep sediment layers of the Japan Sea, Hole 798B. In Pisciotto, K.A., Ingle, J.C., Jr., von Bryemann, M.T., Barron, J., et al., Proc. ODP., Sci. Results, 127/128, Pt. 1: College Station, TX (Ocean Drilling Program), 761-775.

Cragg, B.A., and Kemp. A.E.S., 1995. Bacterial profiles in deep sediment layers from the eastern equatorial Pacific Ocean, Site 851. In Pisias, N.G., Mayer, L.A., Janacek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds.), Proc. ODP. Sci. Results, 138: College Station, TX (Ocean Drilling Program), 599-604.

Cragg, B.A., Parkes, R.J., Fry, J.C., Herbert, R.A., Wimpenny, J.W.T., and Getliff, J.M., 1990. Bacterial biomass and activity profiles within deep sediment layers, In Suess, E., von Huene, R., et al., Proc. ODP. Sci. Results, 112: College Station, TX (Ocean Drilling Program), 607-619.

Dickens, G.R., 2000. Methane oxidation during the late Palaeocene Thermal Maximum. Bull. Soc. Geol., 171:37-49.

Dickens, G.R., O'Neil, J.R., Rea, D.K., and Owen, R.M., 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 10:965-971.

Getliff, J.M., Fry, J.C., Cragg, B.A., and Parkes, R.J., 1992. The potential for bacterial growth in deep sediment layers of the Japan Sea, Hole 798B—Leg 128. In Pisciotto, K.A., Ingle, J.C., Jr., von Breymann, M.T., Barron, J., M. et al.. Proc. ODP., Sci. Results, 127/128, (Pt. 1): College Station, TX (Ocean Drilling Program), 755-760.

Hesselbo, S.P., Grocke, D.R., Jenkyns, H.C., Bjerrum, C.J., Farrimond, P., Bell, H.S.M., and Green, O.R., 2000. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature, 406:392-395.

Hinrichs, K.-U., 2001. A molecular recorder of methane hydrate destabilization. Geochem. Geophys. Geosyst., 2 (Available at http://www.g-cubed.org).

Hinrichs, K.-U., Hayes, J.M., Sylva, S.P., Brewer, P.G., and DeLong, E.F., 1999. Methane consuming archaebacteria in marine sediments. Nature, 398:802-805.

Hoehler, T.M., Alperin, M.J., Albert, D.B., and Martens, C.S., 1994. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biogeochem. Cycles, 8:451-463.

Hoehler, T.M., Alperin, M.J., Albert, D.B., and Martens, C.S., 1998. Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochim. Cosmochim. Acta, 62:1745-1756.

Holland, H.D., 1984. The Chemical Evolution of the Atmosphere and Oceans: Princeton, (Princeton University Press).

Jørgensen, B.B. 1978. A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. I. Measurement with radiotracer techniques. Geomicrobiol. J., 1:11-28.

Kennett, J.P., Cannariato, K.G., Hendy, I.L., and Behl, R.J., 2000. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials. Science, 288:128-133.

Kieft, T.L., Fredrickson, J.K., Onstott, T.C., Gorby, Y.A., Kostandarithes, H.M., Bailey, T.J., Kennedy, D.W., Li, S.W., Plymale, A.E., Spadoni, C.M., and Gray, M.S. 1998. Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. Appl. Environ. Microbiol., 65:1214-1221.

Knoblauch, C., Jørgensen, B.B., and Harder, J., 1999. Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments. Appl. Environ. Microbiol., 65:4230-4233.

Kvenvolden, K.A., 1993. Gas hydrates: geological perspective and global change. Rev. Geophys., 31:173-187.

Lanoil, B., La Duc, M.T., Sweet, S., Bartlett, D., Kastner, M., Sassen, R., and Nealson, K.H., 2000. Microbial diversity of methane hydrates and other anaerobic methane oxidation zones. Abstr. of the First Astrobiol. Sci. Conf.: Moffett Field, CA (Ames Research Center), 405.

Lonergan, D.J., Jenter, H.L., Coates, J.D., Phillips, E.J.P., Schmidt, T.M., and Lovley, D.R., 1996. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J. Bacteriol., 178:2402-2408.

Mayer, L., Pisias, N., Janecek, T., et al., 1992. Proc. ODP, Init. Repts., 138 (Pt. 1): College Station, TX (Ocean Drilling Program).

Moore, G.F., Taira, A., Klaus, A., et al., 2001. Proc. ODP, Init. Repts., 190 [Online]. Available from World Wide Web: <http://www-odp.tamu.edu/publications/190_IR/190ir.htm>. [Cited 2001-07-02]

Oremland, R.S., Culbertson, C., and Simoneit, B.R.T., 1982. Methanogenic activity in sediment from Leg 64, Gulf of California. In Curray, J.R., Moore, G.T., et al., Init. Repts. DSDP, 64. (Pt. 2): Washington (U.S. Govt. Printing Office), 759-762.

Parkes, R.J., Cragg, B.A., Bale, S.J., Getliff, J.M., Goodman, K., Rochelle, P.A., Fry, J.C., Weightman, A.J., and Harvey, S.M., 1994. Deep bacterial biosphere in Pacific Ocean sediments. Nature, 371:410-413.

Parkes, R.J., Cragg, B.A., Bale, S.J., Goodman, K., Rochelle, P.A., Fry, J.C., 1995. A combined ecological and physiological approach to studying sulfate reduction within deep marine sediment layers. J. Microbio. Meth., 23:235-249.

Parkes, R.J., Cragg, B.A., and Wellsbury, P., 2000. Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeology J., 8:11-28.

Pilson, M.E.Q. 1998. An Introduction to the Chemistry of the Sea: Upper Saddle River (Prentice Hall).

Pisias, N.G., Mayer, L.A., Janacek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds.), 1995. Proc. ODP, Sci. Results, 138: College Station, TX (Ocean Drilling Program).

Raiswell, R., and Canfield, D.E., 1996. Rates of reaction between silicate iron and dissolved sulfide in Peru Margin sediments. Geochim. Cosmochim. Acta, 60:2777-2787.

Ravenschlag, K., Sahm, K., Knoblauch, C., Jørgensen, B.B., and Amann, R., 2000. Community structure, cellular rRNA content and activity of sulfate-reducing bacteria in marine Arctic sediments. Appl. Environ. Microbiol., 66:3592-3602.

Rochelle, P.A., Fry, J.C., Parkes, R.J., and Weightman, A.J., 1992. DNA extraction for 16S rRNA gene analyses to determine genetic diversity in deep sediment communities. FEMS Microbio. Lett., 100:59-66.

Shipboard Scientific Party, 1999. Leg 180 Summary. In Taylor, B., Huchon, P., Klaus, A., et al., Proc. ODP, Init. Repts., 180: College Station, TX (Ocean Drilling Program), 1-77.

Smith, D.C., Spivack, A.J., Fisk, M.R., Haveman, S.A., Staudigel, H., and the Leg 185 Shipboard Scientific Party, 2000. Methods for quantifying potential microbial contamination during deep ocean coring. ODP Tech. Note, 28 [Online]. Available from World Wide Web: <http://www-odp.tamu.edu/publications/tnotes/tn28/INDEX.HTM>. [Cited 2001-07-02]

Suess, E., von Huene, R., et al., 1990. Proc. ODP, Sci. Results, 112: College Station, TX (Ocean Drilling Program).

Tarafa, M.E., Whelan, J.K., Oremland, R.S., and Smith, R.L., 1987. Evidence of microbiological activity in Leg 95 (New Jersey Transect) sediments. In Poag, C.W., Watts, A.B., et al., Init. Repts DSDP, 95, Washington (U.S. Govt. Printing Office), 635-640.

Teske, A., Edgcomb, V., Kysela, D., Gomez, A., Sogin, M.L., and Jannasch, H.W., 2000. New microbial communities in hydrothermal vent sediments of the Guaymas Basin [paper presented at NASA Astrobiol. Meeting, Moffett Field, CA, April 2000].

Thierstein, H.R., and Störrlein, U., 1991. Living bacteria in Antarctic sediments from Leg 119. In Barron, J., Larsen, B., et al., Proc. ODP. Sci. Results, 119: College Station, TX (Ocean Drilling Program), 687-692.

Valentine, D.L., and Reeburgh, W.S., 2000. New Perspectives on Anaerobic Methane Oxidation. Environ. Microbiol., 2:477-484.

Vargas, M., Kashefi, K., Blunt-Harris, E.L., and Lovley, D.R., 1998. Microbial evidence for Fe(III) reduction on early Earth. Nature, 395:65-68.

Whelan, J.K., Oremland, R., Tarafa, M., Smith, R., Howarth, R., and Lee, C., 1986. Evidence for sulfate-reducing and methane-producing microorganisms in sediments from Sites 618, 619, and 622. In Bouma, A.H., Coleman, J.M., Meyer, A.W., et al., Init. Repts DSDP, 96, Washington (U.S. Govt. Printing Office), 767-775.

Whitman, W.B., Coleman, D.C., and Wiebe, W.J., 1998. Prokaryotes: the unseen majority. Proc. Nat. Acad. Sci. U.S.A., 95:6578-6583.

Yeats, R.S., Hart, S.R., et al., 1976. Init. Repts. DSDP, 34: Washington (U.S. Govt. Printing Office).

Figures | Table of Contents