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ABSTRACT

The main objectives of the northern Barbados Ridge ODP Leg 156 are to examine the rates,

effects, and episodicity of structural and fluid processes in an accretionary prism. As designed, the

science program will investigate the interrelationship of fluids, tectonic features, and geochemical

signatures, primarily focused on the décollement. Three sites will measure pore pressure and

permeability at the décollement and then be instrumented to examine episodicity of fluid flow. The

measurements require setting casing from the seafloor through the fault zone. Packer experiments

within screened sections at the fault will provide both permeability and pressure data. The sites will

then be closed-in using the CORK system for temperature and pressure monitoring for several

years.

INTRODUCTION

The importance of fluids in accretionary prism tectonics was a special topic at a NATO-sponsored

workshop in 1989 and spurred innovative experiments and new techniques (Langseth and Moore,

1990). Fluids critically affect the structural development and architecture of accretionary prisms

and their potential evolution into mountain belts (e.g., Hubbert and Rubey, 1959). Structural and

geochemical studies of recovered samples from Barbados and elsewhere attest to multiple fluid-

flow events and evidence for the importance of both intergranular and fracture permeability (e.g.,

Moore and Vrolijk, 1992; Knipe et al. 1991; Moore et al., 1982). Yet we have not been able to tie

these observations to even the most fundamental temporal and spatial scale to validate dynamic

flow models (e.g., Screaton et al., 1990; Shi and Wang, 1988). On Leg 156, our objective is to

combine both in situ measurements of permeability and fluid pressures, long-term monitoring of

temperature and pressure, and fluid chemistry and structural fabric studies in an integrated

program. This experiment is an important and necessary step in evaluating the role of faults in fluid

transport, episodicity of fluid flow, and the relationship to seismicity. Understanding the fate of

subducted and accreted fluids will also contribute to geochemical cycle definition (Kastner et al.,

1991). This program is a logical step in advancing the technological and drilling techniques needed

in this environment.

An east-west-trending seismic line that crosses through ODP Hole 67IB illustrates the main

structural features of the toe region (Shipley et al., 1992; Figs. 1 and 2). These data are consistent
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with earlier data and interpretations that show an extraordinary fault reflection extending at least 70

km westward of the trench (e.g., Biju-Duval et al., 1982; Westbrook and Smith, 1983). Based on

drilling and seismic data, Brown et al. (1990) believe that the prism grows near the toe by

imbrication of thin fault blocks. Also, they indicate that west of Hole 67 IB the prism deforms by

large-scale folding, out-of-sequence thrusting (OOST), and probably underplating. Geochemical

signatures, heat flow, and direct observations detected focused fluid flow in the toe region (e.g.,

Vrolijk et al., 1991; Langseth et al., 1988; Fisher and Hounslow, 1990). The Barbados prism has

two distinct and active fluid regimes separated by the décollement that communicate only near the

toe of the slope (Vrolijk et al., 1991). Both the décollement and several other faults show chemical

and temperature anomalies that require active fluid advection. ODP Hole 67 IB (Leg 110)

penetrated through the > 40-m-thick décollement and 151m into the underlying underthrust section

(Moore et al., 1988). Because of unsuccessful measurements of in-situ fault-zone fluid pressures

on ODP Leg 110 the assertion of near lithostatic pressure at the décollement at DSDP Leg 78 A,

Site 542 ("the inadvertent packer experiment," Moore et al., 1982), remains unverified.

Within the Leg 156 area, a three-dimensional seismic reflection image of the low-angle detachment

fault between the Caribbean and American plates characterizes spatial variations of fault properties

(Fig. 3). Previous work links waveform characteristics of this fault to porosity and fluid pressure

(Bangs and Westbrook, 1991). On the basis of the spatial pattern of décollement reflection

amplitude, inferences about fluid content, migration paths, and fluid pressures are possible. The

fault-zone reflection is usually a compound reversed-polarity reflection modeled as a low-velocity,

high-porosity zone 10-14 m thick. This thickness is significantly less than the drilling-defined

>40-m zone of deformation at ODP Hole 67IB, located within the surveyed area. We infer that the

seismically defined fault is mostly a thin high-porosity zone and is thus an undercompacted, high-

fluid-pressure, dilatant section. If these inferences are correct, then map view variations in seismic

reflection phase and amplitude illustrate complex patterns of fault-zone fluid content and fluid

migration. The amplitude map suggests kilometer-wide channels of locally high porosity and

focused fluid flow. These paths are only subparallel to the expected minimum head as inferred

from overburden variations in the overlying sediment wedge; other factors must modify fluid

migration. Several normal-polarity portions of the fault may be locally drained areas producing

strong asperities in an otherwise weak fault. One is coincident with ODP Hole 67IB and may

explain the success of drilling through the fault zone here. In part the drilling will calibrate the

spatial seismic signature of the décollement.
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SCIENTIFIC OBJECTIVES AND METHODOLOGY

Leg 156 constitutes a drilling and experimental program to evaluate the effects, rates, and

episodicity of fluid flow in the accretionary prism environment. The program will focus on a study

of deeply sourced fluids in the décollement zone of the Barbados Ridge Complex and include

efforts to measure fluid flow through the accretionary prism and sediments underthrust beneath the

décollement zone. Proposed efforts efficiently utilize the geologic and hydrogeologic framework

developed by previous drilling of the Northern Barbados Ridge and take advantage of a three-

dimensional seismic reflection survey and submersible investigations completed in 1992.

Fluid Pressure in and around The Décollement Zone

No reliable fluid-pressure measurements exist for the frontal area of accretionary prisms, though

several attempts at measurement (inadvertent or otherwise) have been made (Biju-Duval, Moore,

et al., 1984; von Huene, 1985). Fluid pressure is the driving force for fluid flow, and must be

known to create any reasonable model of fluid expulsion. Fluid pressure must be known in order

to evaluate structural models of prism tectonics.

Permeabilities of Prism Sediments and Associated Fault Zones

Although measurements on recovered core samples provide estimates of matrix permeability (e.g.,

Taylor and Leonard, 1990), in-situ measurements are essential to determine permeability at the

scale of the flow system. Some models suggest that fault zones may be 3-5 orders of magnitude

more permeable than the matrix (Screaton et al., 1990). Obviously, information on permeability

will dramatically influence the understanding of the dynamics of fluid flow.

Amplitude Anomalies or "Bright Spots " Along Faults

High-amplitude, reversed-polarity reflections in seismic reflection data from the Northern

Barbados Ridge (Bangs and Westbrook, 1991) have been modeled as dilatant zones. Similar

reversals in the Oregon accretionary prism which correlate with surface vents (Moore et al., 1991)

have also been interpreted as dilatant zones. Seismic data from the new 3-D survey in the Leg 110
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area show a large negative polarity amplitude anomaly along the décollement zone. Proposed sites

are located to penetrate this amplitude anomaly, monitor its fluid pressure, and ultimately measure

its migration.

Continuous or Episodic Flow?

Although groundwater systems driven by semi-constant water tables tend to flow continuously,

structural and seismologic intuition suggests that tectonohydrologic systems are episodic. The

nature of the earthquake cycle (Kanamori, 1986) and related fluid flow (Sibson, 1981), and the

ubiquitous crack-seal textures of deformed rocks (e.g., Ramsay, 1980), support this view.

Accordingly, the temporal and spatial variability of fluid flow along a convergent plate boundary,

the décollement zone, must be determined.

The Space/Time Variation in Fluid Composition and its Comparison with Veins

and Authigenic Mineral Phases

The variability of fluid composition in space and time will provide information on potential fluid

sources and allow modeling of solute fluxes.

DRILLING PLAN/STRATEGY

The planned two-month ODP program can accommodate at the most three CORK holes (Fig. 4;

Davis et al., 1992). Figure 4 is a schematic cross section of the margin and seismic line illustrating

the relative positions of the sites. The high-amplitude compound negative-polarity reflection may

be due to dilation of the fault zone, and proposed site NBR-3 is designed to test this hypothesis.

Proposed site NBR-2 is where the fault-plane reflection has a positive polarity, and the fault may

not have high fluid pressures. Proposed site NBR-1, about 1 km seaward of the thrust front, will

examine incipient décollement deformation discovered at Site 672. At a minimum, plans call for

these CORKed holes to be instrumented with a string of temperature sensors and a pair of pressure

sensors in the well and at the seafloor. Two strings will be similar to those successfully used in the

Juan de Fuca and Cascadia drilling programs. A French group led by Jean-Paul Foucher is

supplying a third digital string. These strings are capable of monitoring changes in temperatures (a

proxy for fluid flow) and pressures within the fault zone for at least 2 years. Chemical samplers
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under design may also provide time-series' samples retrievable during later ODP or submersible

operations. Submersibles will allow for additional fluid sampling and transfer of long-term

monitoring data. Planned packer experiments will make estimates of permeability with both pulse

and flow tests. Vertical VSP's are planned at proposed sites NBR-1, NBR-2, and NBR-3, and a

possible bottom-shot offset (shear-wave anisotropy) VSP experiment is scheduled for proposed

site NBR-3. A complete fluids-geochemical sampling and analysis program is also planned. As

time permits, additional conventional sites will refine the spatial view of the fault system. The

elementary objectives of this drilling program, to make measurements of permeability, and to

monitor both the temporal and spatial fluid pressures along an active detachment fault, are

fundamental observations but have remained elusive because of the technical challenge. Our

difficulty now is to implement CORK systems at record water depths and penetrations and to

produce a compelling record of fluid activity along faults.

Special Tools, Experiments, and Sampling

Logging-while-drilling (LWD) is proposed at the three prime sites. LWD provides compensated

dual resistivity, gamma-ray, and compensated density neutron data. An experimental sonic module

could provide traveltime and waveform information. The primary advantage of the LWD is its

likelihood to provide logs in these unstable conditions. Logging while continuing to rotate the bit

with circulation should reduce the risk to downhole equipment. We propose the LWD at the three

prime sites at the start of the leg to provide optimal planning for coring and casing operations, and

to aid in planning wireline logging. Financial and logistical reasons are also accommodated with

the early deployment of the LWD. LWD is a method new to ODP for logging which may be

appropriate for this environment. If LWD funding is not available, the 5.5 days scheduled for

LWD will be necessary to drill dedicated holes for logging. Holes dedicated to logging and without

coring have had modest success in some active margin sites but at great expense of time and lost

equipment.
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Table 1
Special Experiments

(WSTP)

it Bonding Tool (CBL)

NBR-2

48 hrs

48

20

18

15

149

6.2

NBR-3

44 hrs

53

20

20

18

15

170

7.1

NBR-1

44 hrs

0

0

8

15

67

2.8

Logging-While-Drilling (LWD)

Logging

Wireline Sampler Temperature Probe (WSTP)

Vertical Seismic Profile (VSP)/Ce

VSP with bottom shots

Packer

Total Experiments (hrs)

Total Experiments (days)

The standard logging program will include three runs in the open holes: Quad-combo tool (deep

and intermediate velocity, shallow resistivity, and formation density), geochemical tool (measures

relative concentrations of Si, Ca, Fe, S, H, and Cl; and wet weight percentages of K, U, Th, and

Al plus others), and Formation Microscanner (two-dimensional, high-resolution images of the

variations in microresistivity around the borehole wall). The Quad-combo will be split into two

strings if safety concerns for the neutron source exist. This would increase the total number of runs

to four, which in turn would decrease the likelihood for good hole conditions for subsequent logs

(FMS, GLT). Hole conditions could prevent any logging run from being successful. Without

LWD, conventional logging efforts will consist of dedicated holes, extensive mud programs, and

side-entry-sub use. Should LWD be funded and successful, we still propose a fairly full logging

program for comparison and expansion of the LWD data but would exclude dedicated logging

holes. Also there would be little reason to take significant risks to downhole equipment. Given

expected open-hole conditions, minimal basement penetration, and time constraints, we plan no

Borehole Televiewer use.

The drill-string packer will measure fluid pressure and permeability in the cased hole. Open,

screened sections placed within the fault zone will be isolated for pulse and flow experiments.

Following the packer work, the strings of temperature and pressure monitors (along with fluid

samplers in two of the holes) will be sealed-in with the CORK system.
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Standard-geometry vertical seismic profiles (VSP) at the three prime sites will use the array seismic

imager tool (ASI) in cased holes. The ASI is a 50-m-long tool with five 3-component magnetically

coupling geophones. Use within the cased hole provides assurance that hole conditions do not

preclude the experiment. However, the cased hole must have good coupling to the formation for

the ASI tool. A cement bonding tool (CBT) will evaluate the cementing quality critical to both the

ASI tool and hydrologic isolation of the décollement. The VSP will be run in two parts, once after

the second (13-3/8-inch) casing string is set to just above the décollement; and then a second run in

the bottom of the hole after setting of the third (10-3/4-inch) casing string. A second experiment

will use 20 10-kg explosive bottom shots at proposed site NBR-3 with the ASI tool deployed at the

décollement. The objective is to evaluate seismic anisotropy at the fault zone, which should be a

proxy for interpretation of the local stress field.

Significant geochemical sampling will be carried out using the WSTP tool and interstitial water

from whole-round core samples. Because of the importance of geochemical, permeability,

structural, and deformation studies, an unusually large demand for whole-round samples is

expected as an essential part of this program. Every effort will be made to coordinate sampling

activities for multiple use. Even so, many whole rounds will be required in the main zones of

interest as well as for general background characterization of fluid chemistry, physical and

geotechnical properties, and deformation.

General Strategy

The primary sites, in order of scientific priority, are NBR-3, NBR-2, and NBR-1. Operation order

will be NBR-2, NBR-3, and then NBR-1. Proposed site NBR-2 appears to pose fewer drilling

problems than NBR-3. It will be drilled first to gain experience for the more difficult site NBR-3.

Time constraints make all other sites alternates.

Proposed site NBR-2 (essentially Site 671) is about 150 m from Hole 67IB, which penetrated well

below the décollement zone. The site is at the center of one of the normal-polarity regions of the

fault-plane reflection. A cased hole will extend to 590 m, 100 m below the décollement. Coring is

limited to the fault zone from 420 to 590 m. Proposed site NBR-3 targets a relatively bright

negative polarity fault-plane reflection. The cased hole will extend 723 m, 100 m below the

décollement. The entire interval from 0 to 723 m will be cored. Proposed site NBR-1 is on the
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oceanic plate about 2 km east of the frontal thrust. It is located to evaluate the incipient deformation

at the projected stratigraphic level of the main detachment fault. The cased hole will extend about

342 m. The present plan calls for coring from 190 to 290 m, encompassing the incipient fault zone.

TRANSIT

NBR-2

NBR-3

NBR-1

TRANSIT

Water

Depth

[m]

4910

4852

5026

Grand Total

Total

Penetration

[mbsf]

630

723

342

Table 2
Site Time

Cored

[m]

420 - 590

0-723
190 - 290

Estimates

General

Operations

[days]

12.0

16.3

10.8

Special

Experiments

[days]

6.2

7.1

2.8

Total

[days]

0.4

18.2

23.4

13.6

0.4

56.0

Proposed site NBR-1 is the second-priority hole and will be drilled last. If LWD occurs, it may be

necessary to forgo any or all of the special experiments and coring and just drill, set casing, run the

packer experiment, and CORK the hole. The reduced time of special experiments at NBR-1 (Table

2) relfects this situation. If LWD is not available, we will do only enough coring or wireline

logging to locate the décollement for the casing/packer/ CORK program. Time estimates will be

refined after decisions about LWD and other special experiments have been made.

If LWD is available, it would be deployed first at the three prime sites. Then the general sequence

of operations is the same for all three sites:

1) Site-specific coring program and Water Sampler Temperature Probe (WSTP)

2) Wireline logging, plug hole

3) Set reentry cone, 16" and 13-3/8" casing to just above fault

4) Conventional Vertical Seismic Profile (VSP) part I and Cement Bond Log (CBL)

5) Drill and set 10-3/4" casing with screened section at the fault

6) Conventional VSP part II
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7) Shear-wave VSP (only NBR-3)

8) Packer experiment

9) CORK deployment

Effects of Time Contingencies on Planning

The program as currently constituted should achieve most objectives, with the exception of a

complete coring program and a full suite of downhole experiments at NBR-1 (Table 2). Missing

from the coring program is characterization of the lower part of the underthrust section, which will

not be sampled.

Due to the time constraints, conventional wireline logging and the WSTP program may have to be

cut. It is a major objective of the leg to deploy CORKs at three sites. However, this commitment

might be jeopardized depending on the time available. Depending on the outcome of the "special

experiments" and time remaining at NBR-2, some of the "special experiments" at NBR-3 might be

abandoned to complete the minimum CORK/packer test at NBR-1. However, this decision

depends on re-evaluation of the time estimates as the first site proceeds, and then time estimates

and results of special experiments as they proceed at NBR-3.

The full coring program originally considered for NBR-1 (coring to 342 m) would take an

additional 2 days, and the full suite of experiments (46 hr wireline logging, 20 hr WSTP, 14 hr

VSP) would add another 3 days. The original program at NBR-2 included coring from 420 to 890

m (to basement) and would take an additional 3 days.

Should LWD not be funded for Leg 156, 5.5 days become available. Should funding of the

bottom-shot VSP not be approved, 0.75 days become available. Available time would be used in

one of several possible scenarios, which will be discussed in more detail when more information is

available in February.
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Other Time Considerations

Additional time for cementing efforts may be required to assure adequate bonding of the casing to

the formation for hydrologic seals and VSP quality. Additional hole abandoning/sealing efforts

may be necessary to guard against damaging the décollement fluid regime by the exploratory holes.

SAFETY AND POLLUTION PREVENTION

The main issue related to safety and pollution is the penetration of fault zones. Previous drilling in

this area penetrated both out-of-sequence thrusts (OOSTs) and the main detachment zone

(décollement). The pre-existing DSDP and ODP drill sites give a good preview of our proposed

drilling. Previous drilling sampled all stratigraphic sections and discovered no hydrocarbon

occurrences above background. There was no detection of free gas. There was no measurement of

abnormal fluid pressures. Anecdotal data associated with hole instability suggest the possibility of

overpressures at some of the décollement sites.
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Figure 2. Relative true-amplitude depth section of east-west seismic Line 688 (passing through ODP Hole 67 IB) is example
of seismic data. Even at this scale the décollement reflection clearly stands alone, separated by reflection-free intervals above
and below, simplifying its study. Out-of-sequence thrusts become seismically identified westward of km 10. The velocity
function used in migration and depth conversion started with DSDP/ODP data and then was modified by trail migration
velocity studies.
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Barbados Décollement Structure and Amplitude
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Figure 3. This map shows the structure (top) and amplitude of the generally negative-polarity fault- plane reflection. From
previous work, the more negative parts of the fault zone indicate higher fluid content and higher porosity (Bangs and
Westbrook, 1991). Modeling indicates the zone is 10-14 m thick. The big NE-trending "bright" area in the central part of the
map may be a "pulse" of migrating fluids at abnormally high fluid pressures. In contrast, the isolated positive polarity sections
of the fault zone may represent locally drained portions of the fault, producing a locally strong asperity. Note that Hole 67 IB,
which drilled 150 m below the décollement, is located on one of these positive polarity features. The amplitude patterns are
little influenced by overlying fault and fold geometry.

I

gu.
\O CΛ ON



P o
« I'

Barbados Leg 156 Schematic Scientific Objectives
Pore Pressure and Permeability Along Decollement
Episodicity of Flow in Space and Time
Geologic and Geochemical Signatures of Episodic Flow

decollement
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move along decollement^
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Figure 4. Basic cross section showing position of proposed drill sites (NBR-1, NBR-2, and NBR-3 are the primary sites;
the others are alternates depending on circumstances, including time). Note that NBR-2 and NBR-3 are placed to sample
the normal and reversed-phased seismic decollement. NBR-1 will sample the incipient disruptions at the stratigraphic
equivalent of the decollement seaward of the frontal thrust.
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Leg 156 Proposed Sites

Site

NBR-0

NBR-1

NBR-2

NBR-3

NBR-4

NBR-5

NBR-6

Latitude i

15.54004

15.53377

15.52526

15.52525

15.53553

15.54000

15.51743

Longitude l

-58.64083

-58.67623

-58.73164

-58.74759

-58.73234

-58.72325

-58.75696

Line 2

751

723

685

685

731

751

650

CDP 2

1753

1500

1104

990

1099

1164

923

Water

Depth

(m)

4947

5026

4910

4852

4932

4970

4813

Décollement

(mbsf)

216

242

490

623

486

397

701

Basement

(mbsf)

641

709

890

1105

768

776

1232

Total

Drill

Depth

(mbsf)

691

342

590

723

568

497

801

CORK

ALT

Yes

Yes

Yes

ALT

ALT

1. WGS-84 reference system using differential GPS

2. UTIG-processed April-93, 3-D
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Site: NBR-0

Priority: 3

Position: 15.54004; -58.64083 - in WGS-84 reference system using differential GPS

Water Depth: 4947 m

Thickness: décollement - 216 mbsf; basement - 641 mbsf

Seismic Coverage: CDP 1753 Line 751 (UTIG-processed April-93, 3-D)

Objectives: Alternate reference site.

Drilling Program: XCB/RCB to 691 mbsf (T.D.).

Logging and Downhole Operations: -

Nature of Rock Anticipated: Nannofossil mud, radiolarian clay, and pelagic clays. Basement:

MOR.
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Site: NBR-1

Priority: 2

Position: 15.53377; -58.67623 - in WGS-84 reference system using differential GPS

Water Depth: 5026 m

Thickness: décollement - 242 mbsf; basement - 709 mbsf

Seismic Coverage: CDP 1500 Line 723 (UTIG-processed April-93, 3-D)

Objectives: To characterize the incipient fault zone.

Drilling Program: XCB/RCB to 342 mbsf (T.D.), CORK, and casing LWD.

Logging and Downhole Operations: WSTP, Packer, VSP, and Becker/Davis CORK string.

Nature of Rock Anticipated: Nannofossil mud, radiolarian clay, and pelagic clays. Basement:

MOR.
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Site: NBR-2
Priority: 1
Position: 15.52526; -58.73164 - in WGS-84 reference system using differential GPS

Water Depth: 4910 m

Thickness: décollement - 490 mbsf; basement - 890 mbsf

Seismic Coverage: CDP 1104 Line 685 (UTIG-processed April-93, 3-D)

Objectives: To characterize the chemistry, fluid pressure, and permeability of the décollement.

To place long-term temperature and pressure monitors in sealed hole, open at the décollement.

Drilling Program: XCB/RCB to 590 mbsf (T.D.), CORK, and casing LWD.

Logging and Downhole Operations: WSTP, Packer, VSP, and French CORK string with

chemical samplers.

Nature of Rock Anticipated: Marls, chalk, clay, mud and siltstone, and pelagic clays at

bottom. Basement: MOR.
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Site: NBR-3
Priority: 1
Position: 15.52525; -58.74759 - in WGS-84 reference system using differential GPS

Water Depth: 4852 m

Thickness: décollement - 623 mbsf; basement - 1105 mbsf

Seismic Coverage: CDP 990 Line 685 (UTIG-processed April-93, 3-D)

Objectives: To characterize the chemistry, fluid pressure, and permeability of the décollement.

To place long-term temperature and pressure monitors in sealed hole, open at the décollement.

Drilling Program: XCB/RCB to 723 mbsf (T.D.), CORK, and casing LWD.

Logging and Downhole Operations: WSTP, Packer, VSP, and Becker/Davis CORK string

with chemical sampler.

Nature of Rock Anticipated: Marls, chalk, clay, mud and siltstone, and pelagic clays at

bottom. Basement: MOR.
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Site: NBR-4

Priority: 3

Position: 15.53553; -58.73234 - in WGS-84 reference system using differential GPS

Water Depth: 4932 m

Thickness: décollement - 486 mbsf; basement - 768 mbsf

Seismic Coverage: CDP 1099 Line 731 (UTIG-processed April-93, 3-D)

Objectives: To characterize the chemistry, fluid pressure, and permeability of the décollement.

To place long-term temperature and pressure monitors in sealed hole, open at the décollement.

Drilling Program: XCB/RCB to 568 mbsf (T.D.), CORK, and casing. Alternate to proposed

site NBR-3.

Logging and Downhole Operations: WSTP, Packer, VSP, and Becker/Davis CORK string

with chemical sampler.

Nature of Rock Anticipated: Marls, chalk, clay, mud and siltstone, and pelagic clays at

bottom. Basement: MOR.
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Site: NBR-5

Priority: 3

Position: 15.54000; -58.72325 - in WGS-84 reference system using differential GPS

Water Depth: 4970 m

Thickness: décollement - 397 mbsf; basement - 776 mbsf

Seismic Coverage: CDP 1164 Line 751 (UTIG-processed April-93, 3-D)

Objectives: To characterize the chemistry, fluid pressure, and permeability of the décollement.

To place long-term temperature and pressure monitors in sealed hole, open at the décollement.

Drilling Program: XCB/RCB to 497 mbsf (T.D.), CORK, and casing. Alternate to proposed

site NBR-3.

Logging and Downhole Operations: WSTP, Packer, VSP, and Becker/Davis CORK string

with chemical sampler.

Nature of Rock Anticipated: Marls, chalk, clay, mud and siltstone, and pelagic clays at

bottom. Basement: MOR.
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Site: NBR-6

Priority: 3

Position: 15.51743; -58.75696 - in WGS-84 reference system using differential GPS

Water Depth: 4813 m

Thickness: décollement - 701 mbsf; basement - 1232 mbsf

Seismic Coverage: CDP 923 Line 650 (UTIG-processed April-93, 3-D)

Objectives: Addition of spatial sampling of fluid and physical properties of the prism and

décollement.

Drilling Program: XCB/RCB to 801 mbsf (T.D.).

Logging and Downhole Operations: WSTP.

Nature of Rock Anticipated: Marls, chalk, clay, mud and siltstone, and pelagic clays at

bottom. Basement: MOR.
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