REFERENCES

Ballotti, D.M., Christensen, N.I., and Becker, K., 1992. Seismic properties of serpentinized peridotite from the Mariana forearc. In Fryer, P., Pearce, J.A., Stokking, L.B., et al., Proc. ODP, Sci. Results, 125: College Station, TX (Ocean Drilling Program), 581–584.

Benton, L.D., 1997. Origin and evolution of serpentine seamount fluids, Mariana and Izu–Bonin forearcs: implications for the recycling of subducted material [Ph.D. dissert.]. Univ. Tulsa.

Benton, L.D., Ryan, J.G., and Tera, F., 2001. Boron isotope systematics of slab fluids as inferred from a serpentine seamount, Mariana forearc. Earth Planet. Sci. Lett., 187:273–282. doi:10.1016/S0012-821X(01)00286-2

Benton, L.D., Ryan, J.G., and Savov, I.P., 2004. Lithium abundance and isotope systematics of forearc serpentinites, conical seamount, Mariana forearc: insights into the mechanics of slab-mantle exchange during subduction.Geochem., Geophys., Geosyst., 5. doi:10.1029/2004GC000708

Bloomer, S.H., and Hawkins, J.W., 1983. Gabbroic and ultramafic rocks from the Mariana trench: an island arc ophiolite. In Hayes, D.E. (Ed.), The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands (Pt. 2). Geophys. Monogr., 27:294–317.

Bloomer, S.H., Taylor, B., MacLeod, C.J., Stern, R.J., Fryer, P., Hawkins, J.W., and Johnson, L., 1995. Early arc volcanism and the ophiolite problem: a perspective from drilling in the western Pacific. In Taylor, B., and Natland, J. (Eds.), Active Margins and Marginal Basins of the Western Pacific. Geophys. Monogr., 88:1–30.

Cannat, M., Karson, J.A., Miller, D.J., et al., 1995. Proc. ODP, Init. Repts., 153: College Station, TX (Ocean Drilling Program).

Curtis A.C., and Moyer, C.L., 2005. Mariana forearc serpentine mud volcanoes harbor novel communities of extremophilic archaea. Eos, Trans. Am. Geophys. Union, 86(52), Fall Meet. Suppl., Abstract V51C-1510.

D'Antonio, M., and Kristensen, M.B., 2004. Serpentine and brucite of ultramafic clasts from the South Chamorro Seamount (Ocean Drilling Program Leg 195, Site 1200): inferences for the serpentinization of the Mariana forearc mantle. Mineralogical Magazine, 68(6):887–904. doi:10.1180/0026461046860229

Desprairies, A., 1982. Authigenic minerals in volcanogenic sediments cored during DSDP Leg 60. In Hussong, D.M., Uyeda, S., et al., Init. Repts. DSDP, 60: Washington (U.S. Govt. Printing Office), 455–466.

Dick, H.J.B., Schouten, H., Meyer, P.S., Gallo, D.G., Bergh, H., Tyce, R., Patriat, P., Johnson, K.T.M., Snow, J., and Fisher, A., 1991. Tectonic evolution of the Atlantis II Fracture Zone. In Von Herzen, R.P., Robinson, P.T., et al., Proc. ODP, Sci. Results, 118: College Station, TX (Ocean Drilling Program), 359–398.

Elliott, T., Plank, T., Zindler, A., White, W., and Bourdon, B., 1997. Element transport from slab to volcanic front at the Mariana Arc, J. Geophys. Res., 102:14991–15020. doi:10.1029/97JB00788

Fryer, P., 1981. Petrogenesis of basaltic rocks from the Mariana Trough. Ph.D. Thesis, Univ. of Hawaii, Honolulu.

Fryer, P., 1992. A synthesis of Leg 125 drilling of serpentine seamounts on the Mariana and Izu-Bonin forearcs. In Fryer, P., Pearce, J.A., Stokking, L.B., et al., Proc. ODP, Sci. Results, 125: College Station, TX (Ocean Drilling Program), 593–614.

Fryer, P., 1996a. An actively venting serpentine seamount on the southeastern Mariana forearc: Shinkai 6500 dives 280 and 281. JAMSTEC Journal of Deep Sea Research, 12:247–256.

Fryer, P., 1996b. Evolution of the Mariana convergent margin. Rev. of Geophysics, 34(1):89–125. doi:10.1029/95RG03476

Fryer, P., 2002. Recent studies of serpentinite occurrences in the oceans: mantle-ocean interactions in the plate tectonic cycle. Chemie der Erde. 62:257–302. doi:10.1078/0009-2819-00020

Fryer, P., and Fryer, G.J., 1987. Origins of nonvolcanic seamounts in a forearc environment. In Keating, B.H., Fryer, P., Batiza, R., and Boehlert, G.W. (Eds.), Seamounts, Islands, and Atolls. Geophys. Monogr., 43:61–69.

Fryer, P., and Mottl, M.J., 1992. Lithology, mineralogy, and origin of serpentine muds recovered from Conical and Torishima forearc seamounts: results of Leg 125 drilling. In Fryer, P., Pearce, J.A., Stokking, L.B., et al., Proc. ODP, Sci. Results, 125: College Station, TX (Ocean Drilling Program), 343–362.

Fryer, P., and Mottl, M., 1997. Shinkai 6500 investigations of a resurgent mud volcano on the southeastern Mariana forearc. JAMSTEC J. Deep Sea Res., 13:103–114.

Fryer, P., and Todd, C., 1999. Mariana blueschist mud volcanism sampling the subducted slab. Eos, Trans. Am. Geophys. Union, 80:S349.

Fryer, P., Ambos, E.L., and Hussong, D.M., 1985. Origin and emplacement of Mariana forearc seamounts. Geology, 13(11):774–777. doi:10.1130/0091-7613(1985)13<774:OAEOMF>2.0.CO;2

Fryer, P., Wheat, C.G., and Mottl, M.J., 1999. Mariana blueschist mud volcanism: implications for conditions within the subduction zone. Geology, 27:103–106. doi:10.1130/0091-7613(1999)027<0103:MBMVIF>2.3.CO;2

Fryer, P., Saboda, K.L., Johnson, L.E., Mackay, M.E., Moore, G.F., and Stoffers, P., 1990. Conical seamount: SeaMARC II, Alvin submersible, and seismic reflection studies. In Fryer, P., Pearce, J.A., Stokking, L.B., et al., Proc. ODP, Init. Repts., 125: College Station, TX (Ocean Drilling Program), 69–80.

Fryer, P., Mottl, M., Johnson, L., Haggerty, J., Phipps, S., and Maekawa, H., 1995. Serpentine bodies in the forearcs of western Pacific convergent margins: origin and associated fluids. In Taylor, B., and Natland, J. (Eds.), Active Margins and Marginal Basins of the Western Pacific. Geophys. Monogr., 88:259–279.

Fryer, P., Lockwood, J., Becker, N., Todd, C., and Phipps, S., 2000. Significance of serpentine and blueschist mud volcanism in convergent margin settings. In Dilek, Y., Moores, E.M., Elthon, D., and Nichols, A. (Eds.), Ophiolites and Oceanic Crust: New Insights from Field Studies and Ocean Drilling Program, Geol. Soc. Am., Spec. Publ., 349:35–51.

Gharib, J., Fryer, P., and Ross, K., 2002. Lithological and mineralogical analysis of serpentine mud samples from the Mariana forearc. Eos, Trans. Am. Geophys. Union, 83:T72A. (Abstract)

Girardeau, J., and Lagabrielle, Y., 1992. Deformation history of peridotites from the Mariana forearc, Conical Seamount, Leg 125. In Fryer, P., Pearce, J.A., Stokking, L.B., et al., Proc. ODP, Sci. Results, 125: College Station, TX (Ocean Drilling Program), 519–532.

Haggerty, J.A., 1991. Evidence from fluid seeps atop serpentine seamounts in the Mariana Forearc: clues for emplacement of the seamounts and their relationship to forearc tectonics. Mar. Geol., 102:293–309. doi:10.1016/0025-3227(91)90013-T

Haggerty, J.A., and Chaudhuri, S., 1992. Strontium isotopic composition of the interstitial waters from Leg 125: Mariana and Bonin forearc. In Fryer, P., Pearce, J.A., Stokking, L.B., et al., Proc. ODP, Sci. Results, 125: College Station, TX (Ocean Drilling Program), 397–400.

Haggerty, J.A., and Fisher, J.B., 1992. Short-chain organic acids in interstitial waters from Mariana and Bonin forearc serpentines: Leg 125. In Fryer, P., Pearce, J.A., Stokking, L.B., et al., Proc. ODP, Sci. Results, 125: College Station, TX (Ocean Drilling Program), 387–395.

Horine, R.L., Moore, G.F., and Taylor, B., 1990. Structure of the outer Izu-Bonin forearc from seismic-reflection profiling and gravity modeling. In Fryer, P., Pearce, J.A., Stokking, L.B., et al., Proc. ODP, Init. Repts., 125: College Station, TX (Ocean Drilling Program), 81–94.

Hussong, D.M., and Fryer, P., 1982. Structure and tectonics of the Mariana arc and forearc: drilling site selection surveys. In Hussong, D.M., Uyeda, S., et al., Init. Repts. DSDP, 60: Washington (U.S. Govt. Printing Office), 33–44.

Ishii, T., 1985. Dredged samples from the Ogasawara fore-arc seamount or "Ogasawara paleoland"–"fore-arc ophiolite." In Nasu, N., Kobayashi, K., Kushiro, I., and Kagami, H. (Eds.), Formation of Active Ocean Margins: Tokyo (Terra Sci. Publ.), 307–342.

Ishii, T., Robinson, P.T., Maekawa, H., and Fiske, R., 1992. Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc, Leg 125. In Fryer, P., Pearce, J.A., Stokking, L.B., et al., Proc. ODP, Sci. Results, 125: College Station, TX (Ocean Drilling Program), 445–485.

Ishikawa, T., and Tera, F., 1999. Two isotopically distinct fluid components involved in the Mariana arc; evidence from Nb/B ratios and B, Sr, Nd, and Pb isotope systematics. Geology, 27:83–86. doi:10.1130/0091-7613(1999)027<0083:TIDFCI>2.3.CO;2

Johnson, L.E., 1992. Mafic clasts in serpentine seamounts: petrology and geochemistry of a diverse crustal suite from the outer Mariana forearc. In Fryer, P., Pearce, J.A., Stokking, L.B., et al., Proc. ODP, Sci. Results, 125: College Station, TX (Ocean Drilling Program), 401–413.

Johnson, L.E., and Fryer, P., 1990. The first evidence of MORB-like lavas from the outer Mariana forearc: geochemistry, petrography and tectonic implications. Earth Planet. Sci. Lett., 100:304–316. doi:10.1016/0012-821X(90)90193-2

Johnson, L.E., Fryer, P., Taylor, B., Silk, M., Sliter, W.V., Jones, D.L., Itaya, T., and Ishii, T., 1991. New evidence for crustal accretion in the outer Mariana forearc: Cretaceous radiolarian cherts and MORB-like lavas. Geology, 19:811–814. doi:10.1130/0091-7613(1991)019<0811:NEFCAI>2.3.CO;2

Kamimura, A., Kasahara, J., Shinohara, M., Hino, R., Shiobara, H., Fujie, G., and Kanazawa, T., 2002. Crustal structure study at the Izu-Bonin subduction zone around 31°N: implications of serpentinized materials along the subduction plate boundary. Phys. Earth Planet. Inter., 132:105–129. doi:10.1016/S0031-9201(02)00047-X

Kastner, M., 1981. Authigenic silicates in deep sea sediments: formation and diagenesis. In Emiliani, C. (Ed.), The Sea (Vol. 7): The Oceanic Lithosphere: New York (Wiley), 915–980.

Kastner, M., Keene, J.B., and Gieskes, J.M., 1977. Diagenesis of siliceous oozes, I. Chemical controls on the rate of opal-A to opal-CT transformation—an experimental study. Geochim. Cosmochim. Acta, 41:1041–1051. doi:10.1016/0016-7037(77)90099-0

Kerrick, D.M., and Connolly, J.A.D., 2001. Metamorphic devolatilization of subducted oceanic marine sediments and the transport of volatiles into the Earth's mantle. Nature (London, U. K.), 411:293–296. doi:10.1038/35077056

Koster van Gross, A.F., and Gugenheim, S., 1984. The effect of pressure on the dehydration reaction of interlayer water in Na-montmorillonite (Swy-1). Am. Mineral., 69(9-10):872–879.

Koster van Gross, A.F., and Gugenheim, S., 1986. Dehydration of K-exchanged montmorillonite at elevated temperatures and pressures. Clays and Clay Minerals, 34(3):281–286.

Koster van Gross, A.F., and Gugenheim, S., 1989. Dehydroxylation of Ca- and Mg-exchanged montmorillonite. Am. Mineral., 74(5-6):627–636.

Lagabrielle, Y., Karpoff, A.-M., and Cotten, J., 1992. Mineralogical and geochemical analysis of sedimentary serpentinites from Conical Seamount (Hole 778A): implication for the evolution of serpentine seamounts. In Fryer, P., Pearce, J.A., Stokking, L.B., et al., Proc. ODP, Sci. Results, 125: College Station, TX (Ocean Drilling Program), 325–342.

Lockwood, J.P., 1971. Sedimentary and gravity slide emplacement of serpentinite. Geol. Soc. Am. Bull., 82:919–936.

Lockwood, J.P., 1972. Possible mechanisms for the emplacement of alpine-type serpentinite. Mem.—Geol. Soc. Am., 132:273–287.

Macpherson, C.G., and Hall, R., 2001. Tectonic setting of Eocene boninite magmatism in the Izu-Bonin-Mariana forearc. Earth Planet. Sci. Lett., 186(2):215–230. doi:10.1016/S0012-821X(01)00248-5

Macpherson, C.G., and Hall, R., 2003. A western Pacific hotspot? Geophys. Res. Abstr., 5:01682.

Maekawa, H., Shozui, M., Ishii, T., Saboda, K., and Ogawa, Y., 1992. Metamorphic rocks from the serpentinite seamounts in the Mariana and Izu-Ogasawara forearcs. In Fryer, P., Pearce, J.A., Stokking, L.B., et al., Proc. ODP, Sci. Results, 125: College Station, TX (Ocean Drilling Program), 415–430.

Maekawa, H., Shozuni, M., Ishii, T., Fryer, P., and Pearce, J.A., 1993. Blueschist metamorphism in an active subduction zone. Nature (London, U. K.), 364:520–523. doi:10.1038/364520a0

Maekawa, H., Fryer, P., and Ozaki, M., 1995. Incipient blueschist-facies metamorphism in the active subduction zone beneath the Mariana Forearc. In Taylor, B., and Natland, J. (Eds.), Active Margins and Marginal Basins of the Western Pacific. Geophys. Monogr., 88:281–290.

Marty, B., and Tolstikhin, I.N., 1998. CO2 fluxes from mid-ocean ridges, arcs, and plumes, Chem. Geol., 145:233–248. doi:10.1016/S0009-2541(97)00145-9

Miura, R., Nakamura, Y., Koda, K., Tokuyama, H., and Coffin, M.F., 2004. "Rootless" serpentinite seamount on the southern Izu-Bonin forearc: implications for basal erosion at convergent plate margins. Geology; 32(6):541–544. doi:10.1130/G20319.1

Moore, G.W., and Gieskes, J.M., 1980. Interactions between sediment and interstitial water near the Japan Trench, Leg 57, Deep Sea Drilling Project. In von Huene, R., Nasu, N., et al., Init. Repts. DSDP, 56, 57 (Pt. 2): Washington (U.S. Govt. Printing Office), 1269–1275.

Morris, J.D., and Ryan, J.G., 2003. Subduction zone processes and implications for changing composition of the upper and lower mantle. In Holland, H.D., and Turekian, K.K. (Eds.), The Mantle and Core, Vol. 2, Treatise on Geochemistry: New York (Elsevier), 451–471.

Mottl, M.J., 1992. Pore waters from serpentinite seamounts in the Mariana and Izu-Bonin forearcs, Leg 125: evidence for volatiles from the subducting slab. In Fryer, P., Pearce, J.A., Stokking, L.B., et al., Proc. ODP, Sci. Results, 125: College Station, TX (Ocean Drilling Program), 373–385.

Mottl, M.J., and Alt, J.C., 1992. Data report: Minor and trace element and sulfur isotopic composition of pore waters from Sites 778 through 786. In Fryer, P., Pearce, J.A., Stokking, L.B., et al., Proc. ODP, Sci. Results, 125: College Station, TX (Ocean Drilling Program), 683–688.

Mottl, M.J., Komor, S.C., Fryer, P., and Moyer, C.L., 2003. Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean Drilling Program Leg 195. Geochem., Geophys., Geosyst., 4. doi:10.1029/2003GC000588

Mottl, M.J., Wheat, C.G., Fryer, P., Gharib, J., and Martin, J.B., 2004. Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate. Geochim. Cosmochim. Acta, 68(23):4915–4933. doi:10.1016/j.gca.2004.05.037

O'Hanley, D.S., 1996. Serpentinites: records of tectonic and petrological history. Oxford Monogr. Geol. Geophys., Vol. 34.

Pacheco, J.F., Sykes, L.R., and Scholz, C.H., 1993. Nature of seismic coupling along simple plate boundaries of the subduction type. J. Geophys. Res., 98:14133–14160.

Parkhurst, D.L., and Appelo, C.A.J., 1999. Users guide to PHREEQC (version 2)—Water-Resources Investigations Report 99–4259, Denver.

Parkinson, I.J., and Pearce, J.A., 1998. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125); evidence for partial melting and melt-mantle interactions in a supra-subduction zone setting. J. Petrol., 39(9):1577–1618. doi:10.1093/petrology/39.9.1577

Parkinson, I.J., Pearce, J.A., Thirlwall, M.F., Johnson, K.T.M., and Ingram, G., 1992. Trace element geochemistry of peridotites from the Izu-Bonin-Mariana forearc, Leg 125. In Fryer, P., Pearce, J.A., Stokking, L.B., et al., Proc. ODP, Sci. Results, 125: College Station, TX (Ocean Drilling Program), 487–506.

Peacock, S.M., 1990. Fluid processes in subduction zones. Science, 248:329–337.

Peacock, S.M., 1996. Thermal and petrologic structure of subduction zones. In Bebout, G.E., Scholl, D.W., Kirby, S.H., and Platt, J.P. (Eds.), Subduction Top to Bottom. Geophys. Monogr., 96:119–133.

Peacock, S.M., and Hervig, R.L., 1999. Boron isotopic composition of subduction-zone metamorphic rocks. Chem. Geol., 160(4):281–290.

Peacock, S.M., and Hyndman, R.D., 1999. Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakes. Geophys. Res. Lett., 26:2517–2520. doi:10.1029/1999GL900558

Pearce, J.A., Kempton, P.D., Nowell, G.M., and Noble, S.R., 1999. Hf-Nd element and isotope perspective on the nature and provenance of mantle and subduction components in western Pacific arc-basin systems. J. Petrol., 40(11):1579–1611. doi:10.1093/petrology/40.11.1579

Phipps, S.P., and Ballotti, D., 1992. Rheology of serpentinite muds in the Mariana-Izu-Bonin forearc. In Fryer, P., Pearce, J.A., Stokking, L.B., et al., Proc. ODP, Sci. Results, 125: College Station, TX (Ocean Drilling Program), 363–372.

Ransom, B., and Helgeson, H.C., 1995. A chemical and thermodynamic model of dioctahedral 2:1 layer clay minerals in diagenetic processes: the dehydration of smectite as a function of temperature and depth in sedimentary basins. Am. J. Sci., 295:245–281.

Ryan, J.G., Morris, J., Bebout, G.E., and Leeman, W.P., 1996. Describing chemical fluxes in subduction zones: insights from 'depth-profiling' studies of arc and forearc rocks. In Bebout, G.E., Scholl, D.W., Kirby, S.H., and Platt, J.P. (Eds.), Subduction Top to Bottom. Geophys. Monogr., 96:263–268.

Saboda, K.L., Fryer, P., and Maekawa, H., 1992. Metamorphism of ultramafic clasts from Conical Seamount: Sites 778, 779, and 780. In Fryer, P., Pearce, J.A., Stokking, L.B., et al., Proc. ODP, Sci. Results, 125: College Station, TX (Ocean Drilling Program), 431–443.

Sadofsky, S.J., and Bebout, G.E., 2003. Nitrogen geochemistry of subducting sediments: new results from the Izu-Bonin-Mariana margin and insights regarding global nitrogen subduction. Geochem., Geophys., Geosyst., 5(3):Q03115. doi:10.1029/2003GC000543

Sakai, R., Kusakabe, M., Noto, M., and Ishii, T., 1990. Origin of waters responsible for serpentinization of the Izu-Ogasara-Mariana forearc seamounts in view of hydrogen and oxygen isotope ratios. Earth Planet. Sci. Lett., 100:291–303. doi:10.1016/0012-821X(90)90192-Z

Sato, T., Ishimura, C., Kasahara, J., Maegawa, K., Tatetsu, H., and Tanaka, M., 2004. The seismicity and structure of Izu-Bonin arc mantle wedge at 31°N revealed by ocean bottom seismographic observation. Physics of The Earth and Planetary Interiors, 146(3-4):551–562. doi:10.1016/j.pepi.2004.06.003

Savov, I.P., Ryan, J.G., Chan, L.H., D'Antonio, M., Mottl, M., and Fryer, P., 2002. Geochemistry of serpentinites from the S. Chamorro Seamount, ODP Leg 195, Site 1200, Mariana forearc—implications for recycling at subduction zones. Geochim. Cosmochim. Acta, 66:A670.

Savov, I.P., Ryan, J.G., D'Antonio, M., Kelley, K., and Mattie, P., 2005. Geochemistry of serpentinized peridotites from the Mariana forearc conical seamount, ODP Leg 125: implications for the elemental recycling at subduction zones. Geochem., Geophys., Geosyst., 6(1). doi:10.1029/2004GC000777

Seno, T., and Maruyama, S., 1984. Paleogeographic reconstruction and origin of the Philippine Sea. Tectonophys., 102:53–84. doi:10.1016/0040-1951(84)90008-8

Seyfried, W.E., Jr., and Bischoff, J.L., 1979. Low temperature basalt alteration by sea water: an experimental study at 70°C and 150°C. Geochim. Cosmochim. Acta, 43:1937–1947. doi:10.1016/0016-7037(79)90006-1

Seyfried, W.E., Jr., and Mottl, M.J., 1982. Hydrothermal alteration of basalt by seawater under seawater-dominated conditions. Geochim. Cosmochim. Acta, 46:985–1002. doi:10.1016/0016-7037(82)90054-0

Shaw, A.M., Hilton, D.R., Fischer, T.P., Walker, J.A., and Alvarado, G.E., 2003. Contrasting He–C relationships in Nicaragua and Costa Rica: insights into C cycling through subduction zones, Earth Planet. Sci. Lett., 214:499–513. doi:10.1016/S0012-821X(03)00401-1

Shipboard Scientific Party, 1990. Site 780. In Fryer, P., Pearce, J.A., Stokking, L.B., et al., Proc. ODP, Init. Repts., 125: College Station, TX (Ocean Drilling Program), 147–178.

Shipboard Scientific Party, 2002. Site 1200. In Salisbury, M.H., Shinohara, M., Richter, C., et al., Proc. ODP, Init. Repts., 195, 1–173 [Online]. Available from World Wide Web: <http://www-odp.tamu.edu/publications/195_IR/VOLUME/CHAPTERS/IR195_03.PDF>

Smith, W.H.F., and Sandwell, D.T., 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277:1956–1962. doi:10.1126/science.277.5334.1956

Stern, R.J., and Smoot, N.C., 1998, A bathymetric overview of the Mariana forearc. The Island Arc, 7(3):525–540. doi:10.1111/j.1440-1738.1998.00208.x

Stern, R.J., Fouch, M.J., and Klemperer, S., 2004. An overview of the Izu-Bonin-Mariana subduction factory. In Eiler, J. (Ed.), Inside the Subduction Factory. Geophys. Monogr., 138:175–223.

Straub, S.M., and Layne, G.D., 2002. The systematics of boron isotopes in Izu arc front volcanic rocks. Earth Planet. Sci. Lett., 198:25–39. doi:10.1016/S0012-821X(02)00517-4

Taira, A., Tokuyama, H., Suyehiro, K., Takahashi, N., Shinohara, M., Kiyokawa, S., Naka, J., Klaus, A., Saito, S., Anike, K., and Morita, S., 1998. Nature and growth rate of the northern Izu-Bonin (Ogasawara) arc crust and their implications for continental crust formation. The Island Arc, 7:395–407. doi:10.111/j.1440-1738.1998.00198.x

Takahashi, N., Suyehiro, K., and Shinohara, M., 1998. Implications from the seismic crustal structure of the northern Izu-Bonin arc. The Island Arc, 7:383–394. doi:10.1111/j.1440-1738.1998.00197.x

Takai, K., Moyer, C.L., Miyazaki, M., Nogi, Y., Hirayama, H., Nealson, K.H., and Horikoshi, K., 2005. Marinobacter alkaliphilus sp. nov., a novel alkaliphilic bacterium isolated from subseafloor alkaline serpentine mud from Ocean Drilling Program Site 1200 at South Chamorro Seamount, Mariana Forearc. Extremophiles, 9:17–27. doi:10.1007/s00792-004-0416-1

Taylor, B., 1992. Rifting and the volcanic-tectonic evolution of the Izu-Bonin-Mariana arc. In Taylor, B., Fujioka, K., et al., Proc. ODP, Sci. Results, 126: College Station, TX (Ocean Drilling Program), 627–651.

Todd, C.S., and Fryer, P., 1999. Blueschist mud volcanism in the Mariana forearc: sampling the subducted slab. GSA Abstracts, 31(7).

Uyeda, S., 1982. Subduction zones: an introduction to comparative subductology, Tectonophys., 81:133–159. doi:10.1016/0040-1951(82)90126-3

Vanko, D.A., 1986. High-chlorine amphiboles from oceanic rocks: product of highly saline hydrothermal fluids? Am. Mineral., 71:51–59.

Vrolijk, P., 1990. On the mechanical role of smectite in subduction zones. Geology, 18:703–707.

Wessel, J., Fryer, P., Wessel, P., and Taylor, B., 1994. Extension in the northern Mariana forearc. J. Geophys. Res., 99(B8):15181–15203. doi:10.1029/94JB00692

Wessel, P., and Smith, W.H.F., 1995. New version of the Generic Mapping Tools released. Eos, Trans. Am. Geophys. Union, 76:329.

Yamazaki, T., and Yuasa, M., 1998. Possible Miocene rifting of the Izu-Bonin (Ogasawara) arc deduced from magnetic anomalies. The Island Arc, 7:374–382. doi:10.1111/j.1440-1738.1998.00196.x

Zhu, C., 1993. New pH sensor for hydrothermal fluids. Geology, 21(11):983–986. doi:10.1130/0091-7613(1993)021<0983:NPSFHF>2.3.CO;2