REFERENCES

Amann, R.I., Krumholz, L., and Stahl, D.A., 1990. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol., 172:762-770.

Amann, R.I., Ludwig, W., and Schleifer, K.-H., 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Rev., 59:143-169.

Balch, W.E., Fox, G.E., Magrum, L.J., Woese, C.R., and Wolfe, R.S., 1979. Methanogens: reevaluation of a unique biological group. Microbiol Rev., 43:260-296.

Bale, S.J., Goodman, K., Rochelle, P.A., Marchesi, J.R., Fry, J.C., Weightman, A.J., and Parkes, R.J., 1997. Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int. J. Syst. Bacteriol., 47:515-521.

Balsam, W.L., and Damuth, J.E., 2000. Further investigations of shipboard vs. shore-based spectral data: implications for interpreting Leg 164 sediment composition. In Paull, C.K., Matsumoto, R., Wallace, P., and Dillon, W.P. (Eds.), Proc. ODP, Sci. Results, 164: College Station, TX (Ocean Drilling Program), 313-324. [HTML version]

Balsam, W.L., Damuth, J.E., and Schneider, R.R., 1997. Comparison of shipboard vs. shore-based spectral data from Amazon-Fan cores: implications for interpreting sediment composition. In Flood, R.D., Piper, D.J.W., Klaus, A., and Peterson, L.C. (Eds.), Proc. ODP, Sci. Results, 155: College Station, TX (Ocean Drilling Program), 193-215. [PDF version]

Balsam, W.L., Deaton, B.C., and Damuth, J.E., 1998. The effects of water content on diffuse reflectance measurements of deep-sea core samples: an example from ODP Leg 164 sediments. Mar. Geol., 149:177-189.

Barnes, S.P., Bradbrook, S.D., Cragg, B.A., Marchesi, J.R., Weightman, A.J., Fry, J.C., and Parkes, R.J., 1998. Isolation of sulfate-reducing bacteria from deep sediment layers of the Pacific Ocean. Geomicrobiol. J., 15:67-83.

Barns, S.M., Delwiche, C.F., Palmer, J.D., and Pace, N.R., 1996. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc. Natl. Acad. Sci. USA, 93:9188-9193.

Berggren, W.A., Hilgen, F.S. Langereis, C.G., Kent, D.V., Obradovich, J.C., Raffi, I., Rayun, M.E., and Shakleton, N.J., 1995a. Late Neogene chronology: new perspectives in high-resolution stratigraphy. GSAB, 107:1272-1287.

Berggren, W.A., Kent, D.V., Swisher, C.C., and Aubry, M.P., 1995b. A revised Cenozoic geochronology and chronostratigraphy. In Berggren, Kent, Aubry, and Hardenbol, J., (Eds.), Geochronology, Time Scales and Global Stratigraphic Correlation. Spec. Pub. SEPM 59:129-212.

Blum, P., 1997. Physical properties handbook: a guide to the shipboard measurement of physical properties of deep-sea cores. ODP Tech. Note, 26 [Online]. Available from World Wide Web: <http://www-odp.tamu.edu/publications/tnotes/tn26/INDEX.HTM>. [Cited 2002-01-23]

Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jorgensen, B.B., Witte, U., and Pfannkuche, O., 2000. Microscopic identification of a microbial consortium apparently mediating anaerobic methane oxidation above marine gas hydrate. Nature, 407:623-626.

Bullard, E.C., 1954. The flow of heat through the floor of the Atlantic Ocean. Proc. R. Soc. London A, 222:408-429.

Cline, J.D., 1969. Sectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr., 14:454-458.

Coates, J.D., Michaelidou, U.A., Bruce, A., O'Connor, S.M., Crespi, J.N., and Achenbach, L.A., 1999. Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl. Environ. Microbiol., 65:5234-524.

Cragg, B.A., 1994. Bacterial profiles in deep sediment layers from the Lau Basin (Site 834). In Hawkins, J., Parson, L., Allan, J., et al., Proc. ODP, Sci. Results, 135: College Station, TX (Ocean Drilling Program), 147-150.

Cragg, B.A., Parkes, R.J., Fry, J.C., Herbert, R.A., Wimpenny, J.W.T., and Getliff, J.M., 1990. Bacterial biomass and activity profiles within deep sediment layers. In Suess, E., von Huene, R., et al., Proc. ODP, Sci. Results, 112: College Station, TX (Ocean Drilling Program), 607-619.

Cragg, B.A., Parkes, R.J., Fry, J.C., Weightman, A.J., Rochelle, P.A., and Maxwell, J.R., 1996. Bacterial populations and processes in sediments containing gas hydrates (ODP Leg 146: Cascadia Margin). Earth Planet. Sci. Lett., 139:497-507.

Davis, E.E., Villinger, H., MacDonald, R.D., Meldrum, R.D., and Grigel, J., 1997. A robust rapid-response probe for measuring bottom-hole temperatures in deep-ocean boreholes. Mar. Geophys. Res., 19:267-281.

Dickens, G.R., Paull, C.K., Wallace, P., and the ODP Leg 164 Scientific Party, 1997. Direct measurement of in situ methane quantities in a large gas-hydrate reservoir. Nature, 385:427-428.

Duan, Z., Møller, N., Greenberg, J., and Weare, J.H., 1992. The prediction of methane solubility in natural waters to high ionic strengths from 0° to 250°C and from 0 to 1600 bar. Geochim. Cosmochim. Acta, 56:1451-1460.

Ellis, D.V., 1987. Well Logging for Earth Scientists: New York (Elsevier).

Espitalié, J., Deroo, G., and Marquis, F., 1986. La pyrolyse Rock-Eval et ses applications, Partie III. Rev. Inst. Fr. Pet., 41:73-89.

Evans, H.B., 1965. GRAPE—a device for continuous determination of material density and porosity. Trans. SPWLA 6th Ann. Logging Symp., Dallas, 2:B1-B25.

Ferdelman, T.G., Fossing, H., Neumann, K., and Schulz, H.D., 1999. Sulfate reduction in surface sediments of the southeast Atlantic continental margin between 15°38´S and 27°57´S (Angola and Namibia). Limnol. Oceanogr., 44:650-661.

Fisher, A.T., and Becker, K., 1993. A guide to ODP tools for downhole measurements. ODP Tech. Note, 10 [Online]. Available from World Wide Web: <http://www-odp.tamu.edu/publications/tnotes/tn10/10toc.html>.[Cited 2002-01-23]

Fossing, H., Ferdelman, T.G., and Berg, P., 2000. Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (South-East Atlantic off Namibia). Geochim. Cosmochim. Acta, 64:897-910.

Fossing, H., and Jørgensen, B.B., 1989. Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction method. Biogeochemistry, 8:205-222.

Freier, D., Mothershed, Ch.P., and Wiegel, J., 1988. Clostridium thermocellum characterization of JW20. Appl. Environ. Microbiology, 54:104-111.

Fry, J.C., 1988. Determination of biomass. In Austin, B. (Ed.), Methods in Aquatic Bacteriology: Chichester (Wiley), 27-72.

Fuller, M.E., Streger, S.H., Rothmel, R.K., Meilloux, B.J., Hall, J.A., Onstott, T.C., Fredrickson, J.K., Balkwill, D.L., and De Flaun, M.F., 2000. Development of a vital fluorescent staining method for monitoring bacterial transport in subsurface environments. Appl. Env. Microbiol., 66:4486-4496.

Garthright, W.E., 2001. Most probable number from serial dilutions. In Bacteriological Analytical Manual Online (App. 2), U.S. Food and Drug Administration. Available from World Wide Web: http://www.cfsan.fda.gov. [Cited 18-09-2002]

Gieskes, J.M., Gamo, T., and Brumsack, H., 1991. Chemical methods for interstitial water analysis aboard JOIDES Resolution. ODP Tech. Note, 15 [Online]. Available from World Wide Web: <http://www-odp.tamu.edu/publications/tnotes/tn15/f_chem1.htm>. [Cited 2002-01-23]

Goldberg, D., 1997. The role of downhole measurements in marine geology and geophysics. Rev. Geophys., 35:315-342.

Heid, C.A., Stevens, J., Livak, K.J., and Williams, P.M., 1996. Real time quantitative PCR. Genome Res., 6:986-994.

Hoehler, T.M., Alperin, M.J., Albert, D.B., and Martens, C.S., 1998. Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochim. Cosmochim. Acta, 62:1745-1756.

Hoehler, T.M., Borowski, W.S., Alperin, M.J., Rodriguez, N.M., and Paull, C.K., 2000. Model, stable isotope, and radiotracer characterization of anaerobic methane oxidation in gas hydrate-bearing sediments of the Blake Ridge. In Paull, C.K., Matsumoto, R., Wallace, P.J., and Dillon, W.P. (Eds.), Proc. ODP, Sci. Results, 164: College Station, TX (Ocean Drilling Program), 79-85. [HTML version]

Holm-Hansen, O., and Booth, C.R., 1966. The measurement of adenosine triphosphate in the ocean and its ecological significance. Limnol. Oceanogr., 11:510-519.

Hoppie, B.W., Blum, P., and the Shipboard Scientific Party, 1994. Natural gamma-ray measurements on ODP cores: introduction to procedures with examples from Leg 150. In Mountain, G.S., Miller, K.G., Blum, P., et al., Proc. ODP, Init. Repts., 150: College Station, TX (Ocean Drilling Program), 51-59.

Horai, K., and Von Herzen, R.P., 1985. Measurement of heat flow on Leg 86 of the Deep Sea Drilling Project. In Heath, G.R., Burckle, L.H., et al., Init. Repts. DSDP, 86: Washington (U.S. Govt. Printing Office), 759-777.

Hugenholtz, P., Pitulle, C., Hershberger, K.L., and Pace, N.R., 1998. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol., 180:366-376.

Inagaki, F., Sakihama, Y., Takai, K., Komatsu, T., Inoue, A., and Horikoshi, K., in press. Transition in microbial community structure and presence of unusual microorganisms in a deep-sea rock. Geomicrobiol. J., 19.

Inagaki, F., Takai, K., Komatsu, T., Kanamatsu, T., Fujioka, K., and Horikoshi, K., 2001. Archaeology of Archaea: geomicrobiological record of Pleistocene thermal events concealed in a deep-sea subseafloor environment. Extremophiles, 5:385-392.

Isaksen, M.F., and Jørgensen, B.B., 1994. Thermophilic sulfate reducing bacteria in cold marine sediment. FEMS Microbiol. Ecol., 14:1-8.

Iversen, N., and Jørgensen, B.B., 1985. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol. Oceanogr., 30:944-955.

Jørgensen, B.B., 1978. A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. I. Measurement with radiotracer techniques. Geomicrobiol. J., 1:11-28.

————, 1982. Mineralization of organic matter in the seabed—the role of sulphate reduction. Nature, 296:643-645.

Karl, D.M., and LaRock, P.A., 1975. Adenosine triphosphate measurements in soil and marine sediments. J. Fish. Res. Board Can., 32:599-607.

Klein, M., Friedrich, M., Roger, A.J., Hugenholtz, P., Fishbain, S., Abicht, H., Blackall, L.L., Stahl, D.A., and Wagner, M., 2001. Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J. Bacteriol., 183:6028-6035.

Knoblauch, C., and Jørgensen, B.B., 1999. Effect of temperature on sulfate reduction, growth rate, and growth yield in five psychrophilic sulfate-reducing bacteria from Arctic sediments. Environ. Microbiol., 1:457-467.

Knoblauch, C., Jørgensen, B.B., and Harder, J., 1999a. Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments. Appl. Environ. Microbiol., 65:4230-4233.

Knoblauch, C., Sahm, K., and Jørgensen, B.B., 1999b. Psychrophilic sulphate reducing bacteria isolated from permanently cold arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov., and Desulfotalea arctica sp. nov. Int. J. Syst. Bacteriol., 49:1631-1643.

Kristiansen, J.I., 1982. The transient cylindrical probe method for determination of thermal parameters of earth materials [Ph.D. dissert.]. Åarhus Univ.

Kvenvolden, K.A., and McDonald, T.J., 1986. Organic geochemistry on the JOIDES Resolution—an assay. ODP Tech. Note, 6.

Lécuyer, C., Grandjean, P., and Sheppard, S.M.F., 1999. Oxygen isotope exchange between dissolved phosphate and water at temperatures 135°C: inorganic vs. biological fractionation. Geochim. Cosmochim. Acta, 63:855-862.

Levin, G.V., Clendenning, J.R., Chappelle, E.W., Heim, A.H., and Rocek, E., 1964. A rapid method for detection of microorganisms by ATP assay. Bioscience, 14:37-38.

Li, L., Kato, C., and Horikoshi, K., 1999. Bacterial diversity in deep-sea sediments from different depths. Biodivers. Conserv., 8:659-677.

Liu, W.-T., Marsh, T.L., Cheng, H., and Forney, L.J., 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol., 63:4516-4522.

Llobet-Brossa, E., Rossello-Mora, R., and Amann, R., 1998. Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl. Environ. Microbiol., 64:2691-2696.

Lovell, M.A., Harvey, P.K., Brewer, T.S., Williams, C., Jackson, P.D., and Williamson, G., 1998. Application of FMS images in the Ocean Drilling Program: an overview. In Cramp, A., MacLeod, C.J., Lee, S.V., and Jones, E.J.W. (Eds.), Geological Evolution of Ocean Basins: Results from the Ocean Drilling Program. Spec. Publ.—Geol. Soc. London, 131:287-303.

Lovley, D.R., and Goodwin, S., 1988. Hydrogen concentrations as an indicator of terminal elect-on-accepting reactions in aquatic sediments. Geochim. Cosmochim. Acta, 52:2993-3003.

Lovley, D.R., and Phillips, E.J.P., 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol., 51:683-689.

————, 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol., 54:1472-1480.

Ludwig, W., and Schleifer, K.-H., 1999. Phylogeny of bacteria beyond the 16S rRNA standard. ASM News, 65:752-757.

Lueders, T., Chin, K.-J., Conrad, R., and Friedrich, M., 2001. Molecular analyses of methyl-coenzyme M reductase -subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archacal lineage. Environ. Microbiol., 3:194-204.

Mackenzie, K.V., 1981. Nine-term equation for sound speed in the oceans. J. Acoust. Soc. Am., 70:807-812.

Madson, E.L., 2000. Nucleic-acid characterization of the identity and activity of subsurface microorganisms. Hydrogeol. J., 8:112-125.

Maidak, B.L., Cole, J.R., Lilburn, T.G., Parker, C.T., Jr., Saxmen, P.R., Farris, R.J., Garrity, G.M., Olsen, G.J., Schmidt, T.M., and Tiedje, J.M., 2001. The RDP-II (Ribosomal Database Project). Nucleic Acids Res., 29:173-174.

Manheim, F.T., and Sayles, F.L., 1974. Composition and origin of interstitial waters of marine sediments, based on deep sea drill cores. In Goldberg, E.D. (Ed.), The Sea (Vol. 5): Marine Chemistry: The Sedimentary Cycle: New York (Wiley), 527-568.

Marchesi, J.R., Sato, T., Weightman, A.J., Martin, T.A., Fry, J.C., Hiom, S.J., and Wade, W.G., 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol., 64:795-799.

Marchesi, J.R., Weightman, A.J., Cragg, B.A., Parkes, R.J., and Fry, J.C., 2001. Methanogen and bacterial diversity and distribution in deep gas hydrate sediments from the Cascadia Margin as revealed by 16S rRNA molecular analysis. FEMS Microbiol. Ecol., 34:221-228.

Mazzullo, J.M., Meyer, A., and Kidd, R.B., 1988. New sediment classification scheme for the Ocean Drilling Program. In Mazzullo, J., and Graham, A.G. (Eds.), Handbook for Shipboard Sedimentologists. ODP Tech. Note, 8:45-67.

Murray, R.W., Miller, D.J., and Kryc, K.A., 2000. Analysis of major and trace elements in rocks, sediments, and interstitial waters by inductively coupled plasma—atomic emission spectrometry (ICP-AES). ODP Tech. Note, 29 [Online]. Available from World Wide Web: <http://www-odp.tamu.edu/publications/tnotes/tn29/INDEX.HTM>. [Cited 2002-01-23]

Muyzer, G., and Smalla, K., 1998. Application of dematuring gradient gel electrophoersis (DGGE) and temperature gradient electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek, 73:127-141.

Niitsuma, N., and Koyama, M., 1994. Paleomagnetic processor: a fully automatic portable spinner magnetometer combined with an AF demagnetizer and magnetic susceptibility anisotropy meter. Shizuoka Univ. Geosci. Rep., 21:11-19.

Orphan, V.J., Howes, C.H., Hinrichs, K.-U., McKeegan, K.D., and DeLong, E.F., 2001. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science, 293:484-487.

Parkes, R.J., 1987. Analysis of microbial communities within sediments using biomarkers. In Ecology of Microbial Communities (SGM Symposium, Series 41): Cambridge (Cambridge Univ. Press), 147-177.

Parkes, R.J., Cragg, B.A., Bale, S.J., Getliff, J.M., Goodman, K., Rochelle, P.A., Fry, J.C., Weightman, A.J., and Harvey, S.M., 1994. A deep bacterial biosphere in Pacific Ocean sediments. Nature, 371:410-413.

Parkes, R.J., Cragg, B.A., Bale, S.J., Goodman, K., Rochelle, P.A., and Fry, J.C., 1995. A combined ecological and physiological approach to studying sulfate reduction within deep marine sediment layers. J. Microbio. Meth., 23:235-249.

Parkes, R.J., Cragg, B.A., and Wellsbury, P., 2000. Recent studies on bacterial populations and processes in marine sediments: a review. Hydrogeol. Rev., 8:11-28.

Paull, C.K., Lorenson, T.D., Dickens, G., Borowski, W.S., Ussler, W., III, and Kvenvolden, K.A., 2000. Comparisons of in situ and gas core measurements in ODP Leg 164 bore holes. In Holder, G.D., and Bishnoi, P.R. (Eds.), Gas Hydrates; Challenges for the Future: New York (NY Acad. Sci.), 23-31.

Paull, C.K., Matsumoto, R., Wallace, P.J., et al., 1996. Proc. ODP, Init. Repts., 164: College Station, TX (Ocean Drilling Program). 

Pérez-Jiménez, J.R., Young, L.Y., and Kerkhof, L.J., 2001. Molecular characterization of sulfate-reducing bacteria in anaerobic hydrocarbon-degrading consortia and pure cultures using the dissimilatory sulfite reductase (dsr AB) genes. FEMS Microbiol. Ecol., 35:145-150.

Pernthaler, J., Gloeckner, F.-O., Schoenhuber, W., and Amann, R., 2001. Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes. Meth. Enzymol., 30:207-226.

Pettigrew, T.L., 1992. The design and operation of a wireline pressure core sampler (PCS). ODP Tech. Note, 17.

Ravenschlag, K., Sahm, K., and Amann, R., 2001. Quantitative molecular analysis of the microbial community in marine arctic sediments (Svalbard). Appl. Environ. Microbiol., 67:387-395.

Ravenschlag, K., Sahm, K., Knoblauch, C., Jørgensen, B.B., and Amann, R., 2000. Community structure, cellular rRNA content and activity of sulfate-reducing bacteria in marine Arctic sediments. Appl. Environ. Microbiol., 66:3592-3602.

Rider, M., 1996. The Geological Interpretation of Well Logs (2nd ed.): Houston (Gulf Publishing Co.).

Rochelle, P.A., Cragg, B.A., Fry, J.C., Parkes, R.J., and Weightman, A.J., 1994. Effect of sample handling on estimation of bacterial diversity in marine sediments by 16S rRNA gene sequence analysis. FEMS Microbiol. Ecol., 15:215-226.

Rochelle, P.A., Fry, J.C., Parkes, R.J., and Weightman, A.J., 1992. DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. FEMS Microbiol. Lett., 100:59-66.

Sahm, K., MacGregor, B.J., Jørgensen, B.B., and Stahl, D.A., 1999. Sulfate-reduction and vertical distribution of sulfate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine sediment. Environ. Microbiol., 1:65-74.

Schlumberger, 1998. Log Interpretation Charts: Houston (Schlumberger).

————, 1989. Log Interpretation Principles/Applications: Houston (Schlumberger Educ. Services), SMP-7017.

Serra, O., 1984. Fundamentals of Well-Log Interpretation (Vol. 1): The Acquisition of Logging Data. Dev. Pet. Sci., 15A.

————, 1986. Fundamentals of Well-Log Interpretation (Vol. 2): The Interpretation of Logging Data. Dev. Pet. Sci., 15B.

Shepard, F., 1954. Nomenclature based on sand-silt-clay ratios. J. Sediment. Petrol., 24:151-158.

Shipboard Scientific Party, 1988. Explanatory notes. In Suess, E., von Huene, R., et al., Proc. ODP, Init. Repts., 112: College Station, TX (Ocean Drilling Program), 25-44.

————, 1992. Explanatory notes. In Mayer, L., Pisias, N., Janecek, T., et al., Proc. ODP, Init. Repts., 138 (Pt. 1): College Station, TX (Ocean Drilling Program), 13-42.

————, 2001. Explanatory notes. In O'Brien, P.E., Cooper, A.K., Richter, C., et al., Proc. ODP, Init. Repts., 188, 1-66 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA. [HTML version]

————, 2003. Explanatory notes. In Stephen, R.A., Kasahara, J., Acton, G.D., et al., Proc. ODP, Init. Repts., 200, 1-66 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA. [HTML version]

Smith, D.C., and Azam, F., 1992. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar. Microb. Food Webs, 6:107-114.

Smith, D.C., Spivack, A.J., Fisk, M.R., Haveman, S.A., Staudigel, H., and ODP Leg 185 Shipboard Scientific Party, 2000a. Methods for quantifying potential microbial contamination during deep ocean coring. ODP Tech. Note, 28 [Online]. Available from the World Wide Web: <http://www-odp.tamu.edu/publications/tnotes/tn28/INDEX.HTM>. [Cited 2002-01-23]

————, 2000b. Tracer-based estimates of drilling-induced microbial contamination of deep sea crust. Geomicrobiol. J., 17:207-219.

Springer, E., Sachs, M.S., Woese, C.R., and Boone, D.R., 1995. Partial gene sequences for the alpha-subunit of methyl-coenzyme M reductase (MCRI) as a phylogenetic tool for the family Methanosarcinaceae. Internat. J. System. Bacteriol., 45:554-559.

Stoeck, T.G., and Duineveld, C.A., 2000. Nucleic acids and ATP to assess microbial biomass and activity in a marine biosedimentary system. Mar. Biol., 137:1111-1123.

Strickland, J.D.H., and Parsons, T.R., 1972. A Practical Handbook of Seawater Analysis: Ottawa (Fisheries Research Board of Canada).

Stults, J.R., Snoeyenbos-West, O., Methe, B., Lovley, D.R., and Chandler, D.P., 2001. Application of the 5´-fluorogenic exonulease assay (TaqMan) for quantitative ribosomal DNA and rRNA analysis in sediments. Appl. Environ. Microbiol., 67:2781-2789.

Suzuki, M.T., Taylor, L.T., and DeLong, E.F., 2000. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5´-nuclease assays. Appl. Environ. Microbiol., 66:4605-4614.

Takai, K., and Horikoshi, K., 1999. Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics, 152:1285-1297.

————, 2000. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl. Environ. Microbiol., 66:5066-5072.

Takai, K., Komatsu, T., Inagaki, F., and Horikoshi, K., 2001. Distribution of Archaea in a black smoker chimney structure. Appl. Environ. Microbiol., 67:3618-3629.

Teske, A., Hinrichs, K.-U., Edgcomb, V., de Vera Gomez, A., Kysela, D., Sylva, S., Sogin, M.L., and Jannasch, H.W., 2002. Microbial diversity of hydrothermal vent sediments: evidence for anaerobic methane-oxidizing microbial communities. Appl. Environ. Microbiol., 68:1994-2007.

Thamdrup, B., Rosselló-Mora, R., and Amann, R., 2000. Microbial manganese and sulfate reduction in Black Sea shelf sediments. Appl. Environ. Microbiol., 66:2888-2897.

Varner, J.E., and Kok, B., 1967. Extraterrestrial life detection based on oxygen isotope exchange reactions. Science, 155:1110-1112.

Vester, F., and Ingvorsen, K., 1998. Improved most-probable-number method to detect sulfate-reducing bacteria with natural media and a radiotracer. Appl. Environ. Microbiol., 64:1700-1707.

Von Herzen, R.P., and Maxwell, A.E., 1959. The measurement of thermal conductivity of deep-sea sediments by a needle-probe method. J. Geophys. Res., 64:1557-1563.

Wagner, M., Roger, A.J., Flax, J.L., Brusseau, G.A., and Stahl, D.A., 1998. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol., 180:2975-2982.

Wallace, P.J., Dickens, G.R., Paull, C.K., and Ussler III, W., 2000. Effects of core retrieval and degassing on the carbon isotope composition of methane in gas hydrate- and free gas-bearing sediments from the Blake Ridge. In Paull, C.K., Matsumoto, R., Wallace, P.J., and Dillon, W.P. (Eds.), Proc. ODP, Sci. Results, 164, 101-112 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station, TX 77845-9547, U.S.A. [HTML version]

Warthmann, R., Van Lith, Y., Vasconcelos, C., McKenzie, J.A., and Karpoff, A.M., 2000. Bacterially induced dolomite precipitation in anoxic culture experiments, Geology, 28:1091-1094.

Wellsbury, P., Goodman, K., Barth, T., Cragg, B.A., Barnes, S.P., and Parkes, R.J., 1997. Deep marine biosphere fueled by increasing organic matter availability during burial and heating. Nature, 388:573-576.

Wellsbury, P., Goodman, K., Cragg, B.A., and Parkes, R.J., 2000. The geomicrobiology of deep marine sediments from Blake Ridge containing methane hydrate (Sites 994, 995, and 997). In Paull, C.K., Matsumoto, R., Wallace, P.J., and Dillon, W.P. (Eds.), Proc. ODP, Sci. Results, 164: College Station, TX (Ocean Drilling Program), 379-391. [HTML version]

Wentworth, C.K., 1922. A scale of grade and class terms of clastic sediments. J. Geol., 30:377-392.

Whitman, W.B., Coleman, D.C., and Wiebe, W.J., 1998. Prokaryotes: the unseen majority. Proc. Nat. Acad. Sci. U.S.A., 95:6578-6583.

Widdel, F., 1980. Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten sulfatreduzierender Bakterien. [Dissertation], Universität Göttingen.

Widdel, F., and Bak, F., 1992. Gram negative mesophilic sulfate reducing bacteria. In Balows, A., et al. (Eds.): The Prokaryotes (Vol. 4): New York (Springer-Verlag), 3352-3378.

Widdel, F., Kohring, G.-W., Mayer, F., 1983. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch. Microbiol., 134:286-294.

Wiegel, J., 1992. The obligately anaerobic thermophilic bacteria. In Kristjansson, J.K. (Ed.), Thermophilic Bacteria: Boca Raton, FL (CRC-Press), 105-184.

Wilson, M.S., Bakermans, C., and Madson, E.L., 1999. In situ, real-time catabolic gene expression: extraction and characterization of naphtalene dioxygenase mRNA transcripts from groundwater. Appl. Environ. Microbiol., 65:80-87.

Wilson, W.D., 1960. Speed of sound in seawater as a function of temperature, pressure and salinity. J. Acoust. Soc. Am., 32:641-644.

Woese, C.R., Kandler, O., and Wheelis, M.L., 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Nat. Acad. Sci. U.S.A., 87:4576-4579.

Wyllie, M.R.J., Gregory, A.R., and Gardner, L.W., 1956. Elastic wave velocities in heterogeneous and porous media. Geophysics, 21:41-70.

Zehnder, A.J.B., and Wuhrmann, K., 1976. Titanium(III)citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobs. Science, 194:1165-1166.