REFERENCES

Aharon, P., and Fu, B., 2000. Microbial sulfate reduction rates and sulfur and oxygen isotope fractionation at oil and gas seeps in deepwater Gulf of Mexico. Geochim. Cosmochim. Acta, 64(2):233–246. doi:10.1016/S0016-7037(99)00292-6

Altabet, M.A., Francoise, R., Murray, D.W., and Prell, W.L., 1995. Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios. Nature (London, U. K.), 373(6514):506–509. doi:10.1038/373506a0

American Public Health Association, 1989. Estimation of bacterial density. In Clesceri, L.S., Greenberg, A.E., and Trussell, R.R. (Eds.), Standard Methods for the Examination of Water and Wastewater (17th ed.): Washington D.C. (American Public Health Association), 977–980.

Baker, P.A., and Kastner, M., 1981. Constraints on the formation of sedimentary dolomite. Science, 213:215–216.

Bale, S.J., Goodman, K., Rochelle, P.A., Marchesi, J.R., Fry, J.C., Weightman, A.J., and Parkes, R.J., 1997. Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int. J. Syst. Bacteriol., 47:515–521.

Barer, M.R., and Harwood, C.R., 1999. Bacterial viability and culturability. Adv. Microb. Physiol., 41:93–137.

Barnes, S.P., Bradbrook, S.D., Cragg, B.A., Marchesi, J.R., Weightman, A.J., Fry, J.C., and Parkes, R.J., 1998. Isolation of sulfate-reducing bacteria from deep sediment layers of the Pacific Ocean. Geomicrobiol. J., 15:67–83.

Barns, S.M., Delwiche, C.F., Palmer, J.D., and Pace, N.R., 1996. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc. Natl. Acad. Sci. U. S. A., 93:9188–9193.

Biddle, J.F., Lipp, J.S., Lever, M., Lloyd, K., Sørensen, K., Anderson, R., Fredricks, H.F., Elvert, M., Kelly, T.J., Schrag, D.P., Sogin, M.L., Brenchley, J.E., Teske, A., House, C.H., and Hinrichs, K.-U., 2006. Heterotrophic archaea dominate sedimentary subsurface ecosystems off Peru. Proc. Natl. Acad. Sci. U. S. A., 103(10):3846-3851. doi:10.1073/pnas.0600035103

Biddle, K.A., Kastner, M., and Bartlett, D.H., 1999. A phylogenetic analysis of microbial communities associated with methane hydrate containing marine fluids and sediments in the Cascadia margin (ODP Site 892B). FEMS Microbiol. Lett., 177:101–108.

Boetius, A., and Lochte, K., 1994. Regulation of microbial enzymatic degradation of organic matter in deep-sea sediments. Mar. Ecol.: Prog. Ser., 104:299–307.

Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B.B., Witte, U., and Pfannkuche, O., 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature (London, U. K.), 407:623–626. doi:10.1038/35036572

Borgund, A.E., and Barth, T., 1994. Generation of short-chain organic-acids from crude-oil by hydrous pyrolysis. Org. Geochem., 21(8–9):943–952. doi:10.1016/0146-6380(94)90053-1

Böttcher, M.E., Brumsack, H.-J., and de Lange, G.J., 1998. Sulfate reduction and related stable isotope (34S, 18O) variations in interstitial waters from the Eastern Mediterranean. In Robertson, A.H.F., Emeis, K.-C., Richter, C., and Camerlenghi, A. (Eds.), Proc. ODP, Sci. Results, 160, 365–373 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station, TX 77845-9547, U.S.A. [PDF]

Böttcher, M.E., Thamdrup, B., and Vennemann, T.W., 2001. Oxygen and sulfur isotope fractionation during anaerobic bacterial disproportionation of elemental sulfur. Geochim. Cosmochim. Acta, 65(10):1601–1609. doi:10.1016/S0016-7037(00)00628-1

Bowman, J.P., and McCuaig, R.D., 2003. Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl. Environ. Microbiol., 69(5):2463–2483. doi:10.1128/AEM.69.5.2463-2483.2003

Burdige, D.J., 2002. Sediment pore waters. In Hansell, D.A., and Carlson, C.A. (Eds.), Biogeochemistry of Marine Dissolved Organic Matter: Amsterdam (Academic Press), 611–663.

Canfield, D.E., 2001a. Biogeochemistry of sulfur isotopes. In Valley, J.W., and Cole, D.R. (Eds.), Reviews in Mineralogy and Geochemistry: Blacksburg, VA (Mineral. Soc. Am.), 607–636.

Canfield, D.E., 2001b. Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochim. Cosmochim. Acta, 65(7):1117–1124. doi:10.1016/S0016-7037(00)00584-6

Chambers, L.A., and Trudinger, P.A., 1979. Microbiological fractionation of stable sulfur isotopes: a review and critique. Geomicrobiol. J., 1(3):249–293.

Chong, S.C., Liu, Y., Cummins, M., Valentine, D.L., and Boone, D.R., 2002. Methanogenium marinum sp. nov., a H2-using methanogen from Skan Bay, Alaska, and kinetics of H2 utilization. Antonie van Leeuwenhoek, 81(1–4):263–270. doi:10.1023/A:1020535222281

Claypool, G.E., 2004. Ventilation of marine sediments indicated by depth profiles of porewater sulfate and 34S. In Hill, R.J., Leventhal, J., Aizenshtat, Z., Beadecker, M.J., Claypool, G.E., Eganhouse, R., Goldhaber, M.B., and Peters, K. (Eds.), Geochemical Investigations in Earth and Space Science. Spec. Publ.—Geochem. Soc., 9:59–65.

Claypool, G.E., and Kaplan, I.R., 1974. The origin and distribution of methane in marine sediments. In Kaplan, I.R. (Ed.), Natural Gases in Marine Sediments: New York (Plenum), 99–139.

Cooles, G.P., Mackenzie, A.S., and Parkes, R.J., 1987. Non-hydrocarbons of significance in petroleum exploration: volatile fatty acids and non-hydrocarbon gases. Mineralog. Mag., 51:483–493.

Cragg, B.A., Parkes, R.J., Fry, J.C., Herbert, R.A., Wimpenny, J.W.T., and Getliff, J.M., 1990. Bacterial biomass and activity profiles within deep sediment layers. In Suess, E., von Huene, R., et al., Proc. ODP, Sci. Results, 112: College Station, TX (Ocean Drilling Program), 607–619.

Cragg, B.A., Parkes, R.J., Fry, J.C., Weightman, A.J., Rochelle, P.A., and Maxwell, J.R., 1996. Bacterial populations and processes in sediments containing gas hydrates (ODP Leg 146: Cascadia margin). Earth Planet. Sci. Lett., 139(3–4):497–507. doi:10.1016/0012-821X(95)00246-9

Davis, B.D., Luger, S.M., and Tai, P.C., 1986. Role of ribosome degradation in the death of starved Escherichia coli cells. J. Bacteriol. 166:439–445.

D'Hondt, S.D., Rutherford, S., and Spivack., A.J., 2002. Metabolic activity of subsurface life in deep-sea sediments. Science, 295(5562):2067–2070. doi:10.1126/science.1064878

D'Hondt, S.L., Jørgensen, B.B., Miller, D.J., Batzke, A., Blake, R., Cragg, B.A., Cypionka, H., Dickens, G.R., Ferdelman, T., Hinrichs, K.-H., Holm, N.G., Mitterer, R., Spivack, A., Wang, G., Bekins, B., Engelen, B., Ford, K., Gettemy, G., Rutherford, S.D., Sass, H., Skilbeck, C.G., Aiello, I.W., Guerin, G., House, C., Inagaki, F., Meister, P., Naehr, T., Niitsuma, S., Parkes, R.J., Schippers, A., Smith, D.C., Teske, A., Wiegel, J., Naranjo Padillo, C., and Solis Acosta, J.L., 2004. Distributions of microbial activities in deep subseafloor sediments. Science, 306(5705):2216–2221. doi:10.1126/science.1101155

D'Hondt, S.L., Jørgensen, B.B., Miller, D.J., et al., 2003. Proc. ODP, Init. Repts., 201 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA. [HTML]

Dickens, G.R., Schroeder, D., Hinrichs, K.-U., and the Leg 201 Scientific Party, 2003. The pressure core sampler (PCS) on Ocean Drilling Program Leg 201: general operations and gas release. In D'Hondt, S.L., Jørgensen, B.B., Miller, D.J., et al., Proc. ODP, Init. Repts., 201, 1–22 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA. [HTML]

Franzmann, P.D., Liu, Y., Balkwill, D.L., Aldrich, H.C., Conway de Macario, E., and Boone, D.R., 1997. Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int. J. Syst. Bacteriol., 47:1068–1072.

Fritz, P., Basharmal, G.M., Drimmie, R.J., Ibsen, J., and Qureshi, R.M., 1989. Oxygen isotope exchange between sulphate and water during bacterial reduction of sulphate. Chem. Geol., 79:99–105.

Fry, J.C., Webster, G., Cragg, B.A., Weightman, A.J., and Parkes, R.J., 2006. Analysis of DGGE profiles to explore the relationship between prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru margin. FEMS Microbiol. Ecol. doi:10.1111/j.1574-6941.2006.00144.x

Ganeshram, R.S., Pedersen, T.F., Calvert, S.E., and Murray, J.W., 1995. Large changes in oceanic nutrient inventories from glacial to interglacial periods. Nature (London, U. K.), 376(6543):755–758. doi:10.1038/376755a0

Hesse, P.P., and Stolz, J.F., 1999. Bacterial magnetite and the Quaternary climate record. In Maher, B.A., and Thompson, R. (Eds.), Quaternary Climates, Environments, and Magnetism: Cambridge (Cambridge Univ. Press), 163–198.

House, C.H., Cragg, B.A., Teske, A., and the Leg 201 Scientific Party, 2003. Drilling contamination tests during ODP Leg 201 using chemical and particulate tracers. In D'Hondt, S.L., Jørgensen, B.B., Miller, D.J., et al., Proc. ODP, Init. Repts., 201, 1–19 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA. [HTML]

Hugenholtz, P., Pitulle, C., Hershberger, K.L., and Pace, N.R., 1998. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol., 180:366–376.

Inagaki, F., Nunoura, T., Nakagawa, S., Teske, A., Lever, M., Lauer, A., Suzuki, M., Takai, K., Delwiche, M., Colwell, F.S., Nealson, K.H., Horikoshi, K., D'Hondt, S.L., and Jørgensen, B.B., 2006. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean margin. Proc. Natl. Acad. Sci. U. S. A., 103:2815–2820. doi:10.1073/pnas.0511033103

Inagaki, F., Okada, H., Tsapin, A.I., and Nealson, K.H., 2005. Microbial survival: the paleome: a sedimentary genetic record of past microbial communities. Astrobiology, 5(2):141–153. doi:10.1089/ast.2005.5.141

Inagaki, F., Suzuki, M., Takai, K., Oida, H., Sakamoto, T., Aoki, K., Nealson, K.H., and Horikoshi, K., 2003. Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl. Environ. Microbiol., 69(12):7224–7235. doi:10.1128/AEM.69.12.7224-7235.2003

Inagaki, F., Takai, K., Komatsu, T., Kanamatsu, T., Fujioka, K., and Horikoshi, K., 2001. Archaeology of Archaea: geomicrobiological record of Pleistocene thermal events concealed in a deep-sea subseafloor environment. Extremophiles, 5(6):385–392. doi:10.1007/s007920100211

Kaeberlein, T., Lewis, K., and Epstein, S.S., 2002. Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment. Science, 296(5570):1127–1129. doi:10.1126/science.1070633

Kallmeyer, J., Ferdelman, T.G., Weber, A., Fossing, H., and Jørgensen, B.B., 2004. A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements. Limnol. Oceanogr.: Methods, 2:171–180.

Kaplan, I.R., and Rittenberg, S.C., 1964. Microbiological fractionation of sulfur isotopes. J. Gen. Microbiol., 34:195–212.

Kastner, M., Elderfield, H., Martin, J.B., Suess, E., Kvenvolden, K.A., and Garrison, R.E., 1990. Diagenesis and interstitial-water chemistry at the Peruvian continental margin—major constituents and strontium isotopes. In Suess, E., von Huene, R., et al., Proc. ODP, Sci. Results, 112: College Station, TX (Ocean Drilling Program), 413–440.

Klein, M., Friedrich, M., Roger, A.J., Hugenholtz, P., Fishbain, S., Abicht, H., Blackall, L.L., Stahl, D.A., and Wagner, M., 2001. Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J. Bacteriol., 183(20):6028–6035. doi:10.1128/JB.183.20.6028-6035.2001

Knittel, K., Lösekann, T., Boetius, A., Kort, R., and Amann, R., 2005. Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol., 71(1):467–479. doi:10.1128/AEM.71.1.467-479.2005

Knoblauch, C., and Jørgensen, B.B., 1999. Effect of temperature on sulfate reduction, growth rate, and growth yield in five psychrophilic sulfate-reducing bacteria from Arctic sediments. Environ. Microbiol., 1(5):457–467. doi:10.1046/j.1462-2920.1999.00061.x

Knoblauch, C., Jørgensen, B.B., and Harder, J., 1999. Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments. Appl. Environ. Microbiol., 65:4230–4233.

Kvenvolden, K.A., 1993. Gas hydrates—geological perspective and global change. Rev. Geophys., 31(2):173–188. doi:10.1029/93RG00268

Lee, Y.-J., Wagner, I.D., Brice, M.E., Kevbrin, V.V., Mills, G.L., Romanek, C.S., and Wiegel, J., 2005. Thermosedimentibacter oceani gen. nov., sp. nov. and Thermosediminibacter litoriperuensis sp. nov., new anaerobic thermophilic bacteria isolated from Peru margin. Extremophiles, 9:375–373.

Lomstein, B.A., Jørgensen, B.B., Schubert, C.J., and Niggemann, J., 2006. Amino acid biogeo- and stereochemistry in coastal Chilean sediments. Geochim. Cosmochim. Acta., 70(12):2970–2989. doi:10.1016/j.gca.2006.03.015

Luna, G.M., Dell'Anno, A., Giuliano, L., and Danovaro, R., 2004. Bacterial diversity in deep Mediterranean sediments: relationship with the active bacterial fraction and substrate availability. Environ. Microbiol., 6(7):745–753. doi:10.1111/j.1462-2920.2004.00611.x

Luna, G.M., Manini, E., and Danovaro, R., 2002. Large fraction of dead and inactive bacteria in coastal marine sediments: comparison of protocols for determination and ecological significance. Appl. Environ. Microbiol., 68(7):3509–3513. doi:10.1128/AEM.68.7.3509-3513.2002

Marchesi, J.R., Weightman, A.J., Cragg, B.A., Parkes, R.J., and Fry, J.C., 2001. Methanogen and bacterial diversity and distribution in deep gas hydrate sediments from the Cascadia margin as revealed by 16S rRNA molecular analysis. FEMS Microbiol. Ecol., 34(3):221–228. doi:10.1111/j.1574-6941.2001.tb00773.x

Martin, J.B., Gieskes, J.M., Torres, M., and Kastner, M., 1993. Bromide and iodine in Peru margin sediments and pore fluids: implication for fluid origins. Geochim. Cosmochim. Acta, 57(18):4377–4389. doi:10.1016/0016-7037(93)90489-J

Mayer, L., Pisias, N., Janecek, T., et al., 1992. Proc. ODP, Init. Repts., 138 (Pts. 1 and 2): College Station, TX (Ocean Drilling Program).

Mikucki, J.A., Liu, Y., Delwiche, M., Colwell, F.S., and Boone, D.R., 2003. Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarinus sp. nov. Appl. Environ. Microbiol., 69(6):3311–3316. doi:10.1128/AEM.69.6.3311-3316.2003

Mitzutani, Y., and Rafter, T.A., 1973. Isotopic behavior of sulphate oxygen in the bacterial reduction of sulphate. Geochem. J., 6:183–191.

Mitterer, R.M., 1993. The diagenesis of proteins and amino acids in fossil shells. In Engel, M.H., and Macko, S.A. (Eds.), Organic Geochemistry: Principles and Applications: New York (Plenum), 739–753.

Newberry, C.J., Webster, G., Cragg, B.A., Parkes, R.J., Weightman, A.J., and Fry, J.C., 2004. Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environ. Microbiol., 6(3):274–287. doi:10.1111/j.1462-2920.2004.00568.x

Nogi, Y., Masui, N., and Kato, C., 1998. Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from deep-sea sediment. Extremophiles, 2(1):1–8. doi:10.1007/s007920050036

Oremland, R.S., Culbertson, C., and Simoneit, B.R.T., 1982. Methanogenic activity in sediment from Leg 64, Gulf of California. In Curray, J.R., Moore, D.G., et al., Init. Repts. DSDP, 64 (Pt. 2): Washington (U.S. Govt. Printing Office), 759–762.

Orphan, V.J., House, C.H., Hinrichs, K.-U., McKeegan, K.D., and DeLong, E.F., 2001. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science, 293(5529):484–487. doi:10.1126/science.1061338

Parkes, R.J., Cragg, B.A., Bale, S.J., Getliff, J.M., Goodman, K., Rochelle, P.A., Fry, J.C., Weightman, A.J., and Harvey, S.M., 1994. Deep bacterial biosphere in Pacific Ocean sediments. Nature (London, U. K.), 371(6496):410–413. doi:10.1038/371410a0

Parkes, R.J., Cragg, B.A., and Wellsbury, P., 2000. Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol. Rev., 8(1):11–28. doi:10.1007/PL00010971

Parkes, R.J., Webster, G., Cragg, B.A., Weightman, A.J., Newberry, C.J., Ferdelman, T.G., Kallmeyer, J., Jørgensen, B.B., Aiello, I.W., and Fry, J.C., 2005. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature (London, U. K.), 436(7049):390–394. doi:10.1038/nature03796

Paytan, A., Kastner, M., Campbell, D., and Thiemens, M.H., 1998. Sulfur isotopic composition of Cenozoic seawater sulfate. Science, 282(5393):1459–1462. doi:10.1126/science.282.5393.1459

Pedersen, K., Hallbeck, L., Arlinger, J., Erlandson, A.-C., and Jahromi, N., 1997. Investigation of the potential for microbial contamination of deep granitic aquifers during drilling using 16S rRNA gene sequencing and culturing methods. J. Microbiol. Methods, 30(3):179–192. doi:10.1016/S0167-7012(97)00066-3

Ravenschlag, K., Sahm, K., Knoblauch, C., Jørgensen, B.B., and Amann, R., 2000. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments. Appl. Environ. Microbiol., 66(8):3592–3602. doi:10.1128/AEM.66.8.3592-3602.2000

Rochelle, P.A., Cragg, B.A., Fry, J.C., Parkes, R.J., and Weightman, A.J., 1994. Effect of sample handling on estimation of bacterial diversity in marine sediments by 16S rRNA gene sequence analysis. FEMS Microbiol. Ecol., 15(1–2):25–226. doi:10.1111/j.1574-6941.1994.tb00245.x

Rudnicki, M.D., Elderfield, H., and Spiro, B., 2001. Fractionation of sulfur isotopes during bacterial sulfate reduction in deep ocean sediments at elevated temperatures. Geochim. Cosmochim. Acta, 65(5):777–789. doi:10.1016/S0016-7037(00)00579-2

Sahm, K., MacGregor, B.J., Jørgensen, B.B., and Stahl, D.A., 1999. Sulfate reduction and vertical distribution of sulfate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine sediment. Environ. Microbiol., 1(1):65–74. doi:10.1046/j.1462-2920.1999.00007.x

Schippers, A., and Neretin, L.N., 2006. Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR. Environ. Microbiol., 8(7):1251–1260. doi:10.1111/j.1462-2920.2006.01019.x

Schippers, A., Neretin, L.N., Kallmeyer, J., Ferdelman, T.G., Cragg, B.A., Parkes R.J., and Jørgensen, B.B., 2005. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature (London, U. K.), 433(7028):861–864. doi:10.1038/nature03302

Schleifer, K.H., and Kandler, O., 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev., 36:407–477.

Sharp, J.H., Carlson, C.A., Peltzer, E.T., Castle-Ward, D.M., Savidge, K.B., and Rinker, K.R., 2002. Final dissolved organic carbon broad community intercalibration and preliminary use of DOC reference materials. Mar. Chem., 77(4):239–253. doi:10.1016/S0304-4203(02)00002-6

Shipboard Scientific Party, 2003a. Explanatory Notes. In D'Hondt, S.L., Jørgensen, B.B., Miller, D.J., et al., Proc. ODP, Init. Repts., 201, 1–103 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA. [HTML]

Shipboard Scientific Party, 2003b. Site 1225. In D'Hondt, S.L., Jørgensen, B.B., Miller, D.J., et al., Proc. ODP, Init. Repts., 201, 1–86 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA. [HTML]

Shipboard Scientific Party, 2003c. Site 1229. In D'Hondt, S.L., Jørgensen, B.B., Miller, D.J., et al., Proc. ODP, Init. Repts., 201, 1–78 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA. [HTML]

Shipboard Scientific Party, 2003d. Site 1230. In D'Hondt, S.L., Jørgensen, B.B., Miller, D.J., et al., Proc. ODP, Init. Repts., 201, 1–107 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA. [HTML]

Smith, D.C., Spivack, A.J., Fisk, M.R., Haveman, S.A., and Staudigel, H., 2000. Tracer-based estimates of drilling-induced microbial contamination of deep sea crust. Geomicrobiol. J., 17:207–219. doi:10.1080/01490450050121170

Smith, D.C., Spivack, A.J., Fisk, M.R., Haveman, S.A., Staudigel, H., and ODP Leg 185 Shipboard Scientific Party, 2000. Methods for quantifying potential microbial contamination during deep ocean coring. ODP Tech. Note, 28 [Online]. Available from World Wide Web: http://www-odp.tamu.edu/publications/tnotes/tn28/INDEX.HTM. [Cited 2002-03-30]

Sorensen, K.B., Lauer, A., and Teske, A., 2004. Archaeal phylotypes in a metal-rich, low-activity deep subsurface sediment of the Peru Basin, ODP Leg 201, Site 1231. Geobiology, 2(3):151–161. doi:10.1111/j.1472-4677.2004.00028.x

Springer, E., Sachs, M.S., Woese, C.R., and Boone, D.R., 1995. Partial gene sequences for the alpha-subunit of methyl-coenzyme M reductase (MCR1) as a phylogenetic tool for the family Methanosarcinaceae. Int. J. Syst. Bacteriol., 45:554–559.

Stahl, D.A., Fishbain, S., Klein, M., Baker, B.J., and Wagner, M., 2002. Origins and diversification of sulfate-respiring microorganisms. Antonie van Leeuwenhoek, 81:189–195.

Suess, E., von Huene, R., et al., 1988. Proc. ODP, Sci. Results, 112: College Station, TX (Ocean Drilling Program).

Takai, K., and Horikoshi, K., 1999. Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics, 152:1285–1297.

Tarafa, M.E., Whelan, J.K., Oremland, R.S., and Smith, R.L., 1987. Evidence of microbiological activity in Leg 95 (New Jersey Transect) sediments. In Poag, C.W., Watts, A.B., et al., Init. Repts. DSDP, 95: Washington (U.S. Govt. Printing Office), 635–640.

Vasconcelos, C., McKenzie, J.A., Berrnasconi, S., Grujic, D., and Tiens, A.J., 1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures, Nature (London, U. K.), 377(6546):220–222. doi:10.1038/377220a0

Ventriani, C., Jannasch, H.W., MacGregor, B.J., Stahl, D.A., and Reysenbach, A.L., 1999. Population structure and phylogenetic characterization of marine benthic Archaea in deep-sea sediments. Appl. Environ. Microbiol., 65:4375–4384.

Warthmann, R., van Lith, Y., Vasconcelos, C., McKenzie, J.A., and Karpoff, A.M., 2000. Bacterially induced dolomite precipitation in anoxic culture experiments. Geology, 28(12):1091–1094. doi:10.1130/0091-7613(2000)028<1091:BIDPIA>2.3.CO;2

Webster, G., Parkes, R.J., Cragg, B.A., Newberry, C.J., Weightman, A.J., and Fry, J.C., in press. Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru margin. FEMS Microbiol. Ecol. doi:10.1111/j.1574-6941.2006.00147.x

Webster, G., Parkes, R.J., Fry, J.C., and Weightman, A.J., 2004. Widespread occurrence of a novel division of bacteria identified by 16S rRNA gene sequences originally found in deep marine sediments. Appl. Environ. Microbiol., 70(9):5708–5713. doi:10.1128/AEM.70.9.5708-5713.2004

Wefer, G., Heinze, P., and Suess, E., 1990. Stratigraphy and sedimentation rates from oxygen isotope composition, organic carbon content, and grain-size distribution at the Peru upwelling region: Holes 680B and 686B. In Suess, E., von Huene, R., et al., Proc. ODP, Sci. Results, 112: College Station, TX (Ocean Drilling Program), 355–367.

Wellsbury, P., Goodman, K., Barth, T., Cragg, B.A., Barnes, S.P., and Parkes, R.J., 1997. Deep marine biosphere fueled by increasing organic matter availability during burial and heating. Nature (London, U. K.), 388(6642):573–576. doi:10.1038/41544

Wellsbury, P., Goodman, K., Cragg, B.A., and Parkes, R.J., 2000. The geomicrobiology of deep marine sediments from Blake Ridge containing methane hydrate (Sites 994, 995, and 997). In Paull, C.K., Matsumoto, R., Wallace, P.J., and Dillon, W.P. (Eds.), Proc. ODP, Sci. Results, 164: College Station, TX (Ocean Drilling Program), 379–391. [HTML]

Whelan, J.K., Oremland, R., Tarafa, M., Smith, R., Howarth, R., and Lee, C., 1986. Evidence for sulfate-reducing and methane producing microorganisms in sediments from Sites 618, 619, and 622. In Bouma, A.H., Coleman, J.M., Meyer, A.W., et al., Init. Repts. DSDP, 96: Washington (U.S. Govt. Printing Office), 767–775.

Whitman, W.B., Coleman, D.C., and Wiebe, W.J., 1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. U. S. A., 95(12):6578–6583. doi:10.1073/pnas.95.12.6578

Woese, C.R., Kandler, O., and Wheelis, M., 1990. Towards a natural system of organisms: proposal for the domains Archaea, bacteria, and Eucarya. Proc. Natl. Acad. Sci. U. S. A., 87:4576–4579.

Wortmann, U.G., Bernasconi, S.M., and Böttcher, M.E., 2001. Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction. Geology, 29(7):647–650. doi:10.1130/0091-7613(2001)029<0647:HDBIES>2.0.CO;2

Yeats, R.S., Hart, S.R., et al., 1976. Init. Repts DSDP, 34: Washington (U.S. Govt. Printing Office).

Zak, I., Sakai, H., and Kaplan, I.R., 1980. Factors controlling the 18O/16O and 34S/32S isotope ratios of ocean sulfates, evaporites and interstitial sulfates from modern deep sea sediments. In Goldberg, E.D., Horibe, Y., and Saruhashi, K. (Eds.), Isotope Marine Chemistry: Tokyo (Rokakuho), 339–373.

Zengler, K., Toledo, G., Rappé, M., Elkins, J., Mathur, E.J., Short, J.M., and Keller, M., 2002. Cultivating the uncultured. Proc. Natl. Acad. Sci. U. S. A., 99(24):15681–15686. doi:10.1073/pnas.252630999

NEXT