REFERENCES

Barnard, W.D., 1978. The Washington continental slope: Quaternary tectonics and sedimentation. Mar. Geol., 27:79–114. doi:10.1016/0025-3227(78)90075-0

Biscaye, P.E., 1965. Mineralogy and sedimentation of recent deep-sea clays in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Am. Bull., 76:803–831.

Cook, H.E., Johnson, P.D., Matti, J.C., and Zemmels, I., 1975. Methods of sample preparation and X-ray diffraction data analysis, X-ray Mineralogy Laboratory, Deep Sea Drilling Project, University of California, Riverside. In Hayes, D.E., Frakes, L.A., et al., Init. Repts. DSDP, 28: Washington (U.S. Govt. Printing Office), 999–1007.

Duncan, J.R., Kulm, L.D., and Griggs, G.B., 1970. Clay mineral composition of late Pleistocene and Holocene sediments of Cascadia Basin, northeastern Pacific Ocean. J. Geol., 78:213–221.

Fisher, A.T., and Underwood, M.B., 1995. Calibration of an X-ray diffraction method to determine relative mineral abundances in bulk powders using matrix singular value decomposition: a test from the Barbados accretionary complex. In Shipley, T.H., Ogawa, Y., Blum, P., et al., Proc. ODP, Init. Repts., 156: College Station, TX (Ocean Drilling Program), 29–37.

Freed, R.L., and Peacor, D.R., 1989. Variability in temperature of the smectite/illite reaction in Gulf Coast sediments. Clays Clay Miner., 24:171–180.

Heath, G.R., and Pisias, N.G., 1979. A method for the quantitative estimation of clay minerals in North Pacific deep-sea sediments. Clays Clay Miner., 27:175–184.

Johnson, L.J., Chu, C.H., and Hussey, G.A., 1985. Quantitative clay mineral analysis using simultaneous linear equations. Clays Clay Miner., 33:107–117.

Karlin, R., 1980. Sediment sources and clay mineral distributions off the Oregon coast. J. Sediment. Petrol., 50:543–560.

Knebel, H.J., Kelly, J.C., and Whetten, J.T., 1968. Clay minerals of the Columbia River: a qualitative, quantitative and statistical evaluation. J. Sediment. Petrol., 38:600–611.

Kulm, L.D., and Fowler, G.A., 1974. Oregon continental margin structure and stratigraphy: a test of the imbricate thrust model. In Burke, C.A., and Drake, C.L. (Eds.), The Geology of Continental Margins: New York (Springer), 261–284.

Kulm, L.D., and Scheidegger, K.F., 1979. Quaternary sedimentation on the tectonically active Oregon continental slope. In Doyle, L.J., and Pilkey, O.H. (Eds.), Geology of Continental Slopes. Spec. Publ.—Soc. Econ. Paleontol. Mineral., 27:247–263.

MacKay, M.E., Moore, G.F., Cochrane, G.R., Moore, J.C., and Kulm, L.D., 1992. Landward vergence and oblique structural trends in the Oregon margin accretionary prism: implications and effect on fluid flow. Earth Planet. Sci. Lett., 109:477–491. doi:10.1016/0012-821X(92)90108-8

McManus, D.A., 1991. Suggestions for authors whose manuscripts include quantitative clay mineral analysis by X-ray diffraction. Mar. Geol., 98:1–5. doi:10.1016/0025-3227(91)90030-8

Moore, C.A., 1968. Quantitative analysis of naturally occurring multicomponent mineral systems by X-ray diffraction. Clays Clay Miner., 16:325–336.

Moore, D.M., and Reynolds, R.C., Jr., 1989. X-Ray Diffraction and the Identification and Analysis of Clay Minerals: Oxford (Oxford Univ. Press).

Rettke, R.C., 1981. Probable burial diagenetic and provenance effects on Dakota Group clay mineralogy, Denver Basin. J. Sediment. Petrol., 51:541–551.

Shipboard Scientific Party, 1994a. Site 891. In Westbrook, G.K., Carson, B., Musgrave, R.J., et al., Proc. ODP, Init. Repts., 146 (Pt. 1): College Station, TX (Ocean Drilling Program), 241–300.

Shipboard Scientific Party, 1994b. Site 892. In Westbrook, G.K., Carson, B., Musgrave, R.J., et al., Proc. ODP, Init. Repts., 146 (Pt. 1): College Station, TX (Ocean Drilling Program), 301–378.

Shipboard Scientific Party, 2003. Leg 204 summary. In Tréhu, A.M, Bohrmann, G., Rack, F.R., Torres, M.E., et al., Proc. ODP, Init. Repts., 204 [Online]. Available from World Wide Web: <http://www-odp.tamu.edu/publications/204_IR/chap_01/chap_01.htm>. [Cited 2005-09-13]

Teichert, B.M.A., Torres, M.E., Bohrmann, G., and Eisenhauer, A., 2005. Fluid sources, fluid pathways and diagenetic reactions across an accretionary prism revealed by Sr and B geochemistry. Earth Planet. Sci. Lett., 239:106–121. doi:10.1016/j.epsl.2005.08.002

Torres, M.E., Teichert, B.M.A., Tréhu, A.M., Borowski, W., and Tomaru, H., 2004. Relationship of pore water freshening to accretionary processes in the Cascadia margin: fluid sources and gas hydrate abundance. Geophys. Res. Lett., 31:L22305. doi:10.1029/2004GL021219

Underwood, M.B., Basu, N., Steurer, J., and Udas, S., 2003. Data report: Normalization factors for semiquantitative X-ray diffraction analysis, with application to DSDP Site 297, Shikoku Basin. In Mikada, H., Moore, G.F., Taira, A., Becker, K., Moore, J.C., and Klaus, A. (Eds.), Proc. ODP, Sci. Results, 190/196, 1–28 [Online]. Available from World Wide Web: <http://www-odp.tamu.edu/publications/190196SR/VOLUME/CHAPTERS/203.PDF>. [Cited 2005-09-13]

Underwood, M.B., 2002. Strike-parallel variations in clay minerals and fault vergence in the Cascadia subduction zone. Geology, 30:155–158. doi:10.1130/0091-7613(2002)030<0155:SPVICM>2.0.CO;2

Underwood, M.B., in press. Sediment inputs to subduction zones: why lithostratigraphy and clay mineralogy matter. In Dixon, T., and Moore, J.C. (Eds.), The Seismogenic Zone of Subduction Thrust Faults: New York (Columbia Univ. Press).

Underwood, M.B., Hoke, K.D., Fisher, A.T., Davis, E.E., Giambalvo, E., Zühlsdorff, L., and Spinelli, G.A., 2005. Provenance, stratigraphic architecture, and hydrogeologic influence of turbidites on the mid-ocean ridge flank of northwestern Cascadia Basin, Pacific Ocean. J. Sediment. Res., 75(1):149-164. doi:10.2110/jsr.2005.012