Chemistry Lab
X-ray fluorescence samples were analyzed for carbon, nitrogen, hydrogen,
and sulfur (CNHS). Only one chemistry technician sailed this leg, and most
of her time was spent helping with curation in the core lab. A chemistry
instrument service tracking system was developed using FileMaker Pro.
Computer Services
Support for the increasingly complex shipboard computer system now
requires two system managers and one programmer for JANUS support.
With the exception of network crashes, the system was quite stable. Most
of the time, allocation went to assisting scientists, technicians, and
Sedco personnel with hardware and software problems, most falling into
the category of user training. One of the system managers was new and
overlapped 6 hr with the other system manager for training. The JANUS
programmer covered the system for the other 6-hr period. Special
projects included:
The fiber optic network Cabletron equipment installation.
Set up and testing the new server for the imaging system.
Installing one of the new janusaxp servers.
Testing the Ffastest high speed data (HSD) system on the SeaNet
system. It worked fine. Procedures need to be determined for its use as an
e-mail transfer system on future legs.
The special conditions and requirements of hard-rock operations brought
to light an unexpected variety of software operation and design issues
primarily concerning JANUS&151data;upload and data acquisition. The
problems were resolved for the most part, but it called to attention the
need for a JANUS programmer to sail on upcoming legs.
Core Lab
Lab procedures were modified significantly from the normal for this leg.
After initial unsuccessful attempts to use core liners, all cores were
drilled without a core liner. Because the quality of the core was good, this
actually simplified our handling of the core, except that all the core had
to be scrubbed with a brush to remove rust and dirt from the barrel. The
core was video scanned (DMT Color CoreScan) and run through the
multisensor track before being cut into working and archive sections.
Paleomagnetic measurements, photography, and thermal conductivity
measurements were done with the archive section. The scientists used the
working half for descriptions, samples, and physical properties
measurements. All personal samples were taken after the drill pipe broke
off in the hole and coring operations ceased.
Curation
This was an unusually demanding leg for the shipboard curator and
assistant curator because of the stringent guidelines and policies
governing hard-rock curation and sampling. With normal hard rock
recovery these policies are reasonable, but the shear quantity of hard rock
recovered made curation a tedious task. Because of the curatorial
complexities, future hard-rock legs should read and take to heart the
curatorial report from this leg. Cores from Leg 118 were shipped to Cape
Town and studied on the transit to Hole 735B.
Downhole Measurements Lab
The Davis-Villinger temperature probe was tested in anticipation of
needing an open hole temperature measurement. Because of hole problems
the tool was not deployed.
Paleomagnetics Lab
The regularly scheduled technician was unable to make it to Cape Town to
participate on this leg. The three scientists, however, had all sailed
previously, and one of our computer techs was a former magnetics tech.
Despite initial disappointment that the new cryomag's dynamic range was
lacking on the higher end, a tremendous amount of data was acquired from
the split sections and minicore samples.
Photography Lab and Microscope Services
Routine operations with no special projects or problems to report.
Physical Properties Lab
All whole-round sections of hard rock were measured on the multisensor
track using the gamma ray attenuation porosity evaluator (GRAPE) sensor,
magnetic susceptibility sensor, and natural gamma sensor. Minicore
samples were used for index properties and velocity measurements.
Pieces from the archive section were used for thermal conductivity
measurements. Resistivity was attempted but abandoned, because the
values were not consistent.
Thin Section Lab
Making thin sections was a full-time effort for one technician. The
coarse-grained gabbros often required oversized billets and sections.
Underway Geophysics and Fantail
The scientific plan did not require seismic surveys, but a VSP experiment
required rigging and hanging a 1000-cubic-inch air gun and
400-cubic-inch water gun over the side using crane #3. An air-powered
winch wrapped with a fuzz-fairing hydrophone cable was welded to the
top of the welder's shack. The hydrophone was deployed during the VSP to
a depth of 300 m. Bathymetry and magnetics were collected during the
first transit. Navigation was continuously recorded during the leg. The
equipment spare parts were relocated into new cabinets, and the area
behind the equipment racks was cleaned out to make a safer and more
efficient work space.
X-ray Lab
Preparing and analyzing samples took the full-time attention of two
technicians, one for sample preparation and one to run the X-ray
fluorescence equipment. Samples were prepared for both major and trace
elements. The X-ray diffraction unit received limited use.
Electronic Services
Electronics maintenance required the support of two technicians to keep
the lab equipment functioning on a 24-hr basis. In addition to routine
maintenance and troubleshooting, the electronics techs installed a Quorum
weather satellite system on the bridge, a weatherproof box on the
Schlumberger maxi cab to plug guns, blast phones cables for VSP
experiments, assisted in the installation of an EPC recorder for seismic
display, and updated the lab stack electrical line drawings.
Safety
Four members of the technical staff participated on the marine emergency
technical squad (METS). The team participated in all Sedco fire drills and
staged a chemical spill in the lab stack for one of the drills.