Establishment of Geophysical Ocean Bottom Observatory (GOBO)
The primary objective of the NERO portion of Leg 179 is to drill a single hole 200 m into
basement and install a reentry cone and casing to prepare Site 757 (or 756) along the Ninteyeast
Ridge as an ocean bottom observatory. The GOBO will be installed at a later time and will be part
of the future network of seafloor observatories proposed in the ION program. The scientific
objectives that can be addressed with geophysical data from long-term ocean bottom observatories
include two broad subject areas: Earth structures and natural hazards. These two areas can each be
divided into subareas according to the scale under investigation: global, regional, and local.
1. Global scale: mantle dynamics, core studies, moment tensor inversion. The ION report emphasizes that "oceans are seismic deserts!" Except for a few stations on oceanic islands, very large zones are unmonitored, particularly in the Pacific, South Atlantic, and East Indian Oceans. With the present station coverage (FDSN [Federation of Digital Seismic Networks], Fig. 7), the best expected lateral resolution is larger than 1000 km. The same problem arises for geomagnetic observatories. There are many shadows or poorly illuminated zones in the Earth. Due to the nonuniformity of earthquake and seismic station distribution, seismic waves recorded in stations do not illuminate the whole Earth. For example, the transition zone (in a broad sense: 400-1000 km of depth) is poorly covered by surface waves and body waves below oceanic areas.
2. Regional scale (wavelengths between 500 and 5000 km): oceanic upper mantle dynamics, lithosphere evolution, and tsunami warning and monitoring. In terms of oceanic upper mantle seismic investigations, only very long wavelengths have been investigated. In addition, surface waves are the only waves sampling the oceanic upper mantle, and there are no direct measurements of body waves. To understand the lithosphere's evolution, it is necessary to improve the lateral resolution of tomographic seismic studies.
3. Local scale (wavelengths <500 km): oceanic crustal structure, sources of noise, and detailed
earthquake source studies (tomography of the source, temporal variations).
Supplementary Objectives:
1. Sample Characterization
In addition to the objectives related to the emplacement of a GOBO at the previously drilled site, at
least 100-200 m of the basaltic basement will be cored and a significant basaltic sample set is likely
to be recovered. These recovery depths into basement are significantly deeper than previous coring
into basement at Sites 757 and 756. The basaltic basement at the proposed site along the Ninetyeast
Ridge includes eruptive units thought to have formed above a mantle plume in the Southern Indian
Ocean (e.g., Saunders et al., 1991). The coring provides the opportunity to conduct an in-depth
study of a volcanic section formed over an oceanic mantle plume. Detailed descriptions, as well as
geochemical, petrologic, and geophysical studies of these basalts will help to further characterize
the origin of these basalts, as well as the volcanic stratigraphy of the Ninteyeast Ridge.
Petrophysical studies including measurements of P and S-wave seismic velocities of the samples
recovered should help to characterize the site and local velocity structure.
2. Geophysical Site Characterization
An extensive suite of seismic experiments will be conducted in conjunction with drilling activities
at the site chosen for the installation of GOBO. These experiments include seismic while drilling,
vertical seismic profile, and oblique seismic experiments, as well as the possible temporary
deployment of a broadband wide dynamic range seismometer in the borehole to test the
deployment procedure and shock resistance of the instrument, as well as the characteristics of
seismic noise levels under the seafloor. These seismic experiments will require four additional
days of ship time and will provide one of the most complete borehole seismic datasets available.
We briefly review these studies and objectives below.